摘要
为了提高模型的精确度,建模分析得到的数据需要经过处理,以进一步消除噪声并降低随机因素的影响。利用卡尔曼滤波器对某石化厂支持向量机模型进行校正,达到了预期效果。仿真实验表明:卡尔曼滤波器在测量数据处理中有明显的去噪效果,在软测量模型校正中应用此方法,可以有效提高模型的精确度和可靠性。
In order to improve model accuracy,the data from modeling analysis has to be processed so as to further eliminate noise and to reduce the influence of random factors.The kalman filter was used to check the support vector machine model in a petrochemical plant and the desired results were achieved.The simulation experiment indicates that kalman filter have obvious denoising effect in the measurement data processing.Using this method in the soft measurement model correction can effectively improve the accuracy and reliability of the model.
出处
《化工自动化及仪表》
CAS
2013年第5期602-605,共4页
Control and Instruments in Chemical Industry
基金
国家自然科学基金项目(61273070)
国家自然科学青年基金资助项目(61203092)
中央高校基本科研业务费专项资金资助项目(JUSRP111A47)
关键词
数据处理
卡尔曼滤波
软测量建模
data processing, kalman filtering, soft sensing modeling