期刊文献+

基于信息熵与灰关联的抽油井泵示功图诊断技术研究 被引量:3

Study on Entropy-based Grey Correlation Fault Diagnosis of Oil Pumping Well Indicator Diagram
下载PDF
导出
摘要 抽油井工作环境、工作过程比较复杂,对抽油井泵示功图故障诊断时由于有些抽油井典型故障的示功图几何形状非常相似,极易产生误判,因此引入基于信息加权熵的灰度关联故障诊断算法,利用信息熵加权值来体现不同故障特征因子所含的信息量,使计算所得与标准故障的关联值变大,与其他故障尤其是易误判故障的关联值变小。实验结果表明:该方法能够减少故障误诊断,使抽油井故障诊断更加精准。 The pumping well' s complex working environment and process and the similar geometrical shape of some typical fault indicator diagrams thereof can lead to wrong fault diagnosis, a entropy-based grey correlation fault diagnosis was introduced to make information entropy weights represent the amount of information that dif- ferent fault characteristics factor contain;the correlate result becomes bigger when contrasted with standard fault and it becomes smaller when contrasted with other faults especially the fault easy to misjudged. The experimen- tal results show that this method can reduce error rate of the fault diagnosis, and can make pumping well diag- nosis more accurate.
出处 《化工自动化及仪表》 CAS 2013年第11期1370-1373,1409,共5页 Control and Instruments in Chemical Industry
基金 国家"十二五"科技支撑计划重点项目(2012BAH12B03)
关键词 示功图 灰度矩阵灰度关联加权熵 indicator diagram, gray matrix, grey correlation, entropy weight
  • 相关文献

参考文献8

  • 1Foley W L, Svinos J G, Chevron Oil Field Research Co. Expert Adviser Program for Rod Pumping[ J]. Jour- nal of Petroleum Technology, 1989 ,gl (g) :394 - go0.
  • 2Derek H J,ARCO Oil and Gas Co,Jennings J W,et al. Sucker Rod Pumping Unit Diagnostics Using an Expert System[ C ]. Permian Basin Oil and Gas RecoverConference. Midland ,Texas : Society of Petroleum Engi- neers, 1988 : 10 - 11.
  • 3Nazi G M. Application of Artificial Neural Network to Pump Card Diagnosis [ J ]. Society of Petroleum Engi- neers,1994,6(6) :9 - 14.
  • 4爨.基于灰色理论的抽油井泵功图诊断技术研究[J].微电子学与计算机,2005,22(3):77-80. 被引量:12
  • 5吴伟,陈国定,何焱.基于人工神经网络和灰度矩阵的泵功图诊断[J].西安石油大学学报(自然科学版),2007,22(3):119-121. 被引量:18
  • 6Chen J J,Duan J L. The Application of CBR and Grey Correlation in Fault Diagnosis System [ C ]. Internation- al Conference on Computer Application and System Modeling. Shanxi, Taiyuan : North University of China, 2010:718 -721:.
  • 7Lu F, Huang J Q. Fault Diagnosis for Sensors and Components of Aero-engine Based on Grey Analysis [C]. 2010 IEEE International Conference on Intelli- gent Computing and Intelligent Systems. Xiamen:ICIS, 2010:623 - 627.
  • 8Lin Y. Fault Diagnosis Method Based on Gray Correla- tion and Evidence Theory [ C ]. 2010 International Conference on Mechanic Automation and Control Engi- neering. Wuhan : MACE ,2010:2581 - 2584.

二级参考文献13

  • 1王玉成,查建中,焦建新,赵振英.抽油机井集成化智能诊断系统的研究[J].石油学报,1994,15(4):125-132. 被引量:10
  • 2彭勇,余国安.识别泵工况的分类器设计[J].西安石油学院学报,1995,10(3):35-37. 被引量:4
  • 3潘志坚,葛家理.自适应神经网络示功图识别[J].石油学报,1996,17(3):104-109. 被引量:13
  • 4[4]Nazi G M.Application of Artificial Network to Pump Card Diagnosis[C].SPE25420.
  • 5邓聚龙.灰预测与灰决策[M].湖北武汉:华中科技大学出版社,2000.7l-llO.
  • 6王九松.抽油井诊断图形分析[M].北京:石油工业出版社,1993.1-20.
  • 7J.F. Lea: Boundary Condition used with Dynamic Models of Beam Pump Performance[J], Southwestern Petroleum Short Course, 1988,251~263.
  • 8D.J. Schafer, J.W. Jennings: An Investigation of Analytical and Numerical Sucker Rod Pumping Mathematical Models,SPE16919, 1987,1~10.
  • 9T. Nicol: Dynamic Analysis of Sucker Rod Pumping[M], M.S.Thesis, University of Oklahoma,Norman, 1980,Jan,7~34.
  • 10杨伟东,李华,李岭森,商同.机械故障诊断的神经网络技术[J].河北工业大学学报,1997,26(4):10-15. 被引量:6

共引文献22

同被引文献39

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部