期刊文献+

杂质诱导熔石英激光的损伤机理 被引量:4

Mechanism of laser damage induced by inclusions in fused silica
下载PDF
导出
摘要 发展了355nm纳秒激光下亚波长杂质粒子引起熔石英损伤的基本模型。通过Mie散射理论和热传导方程,计算了粒子与熔石英边界处的温度随粒子尺寸的变化关系,并分析了达到临界温度时,不同粒子诱导损伤所需的关键能量密度,讨论了各粒子最易引起熔石英损伤的尺寸。实验采用355nm纳秒激光脉冲作用熔石英及其HF刻蚀样品,测得两者的损伤概率。研究表明:粒子吸收激光能量,随着粒子半径的增加,其边缘温度先增大后减小,一定尺寸范围内的粒子才会引起熔石英的损伤;关键能量密度所对应的粒子半径为最易引起熔石英损伤的关键粒子半径;经刻蚀后,熔石英样品表面杂质数密度降低,损伤概率降低,损伤阈值提高。 A model was developed for the description of inclusion-induced damage in fused silica by nanosecond-pulse laser at 355 nm.We calculated the temperature of impurity particles with their sizes increasing,and obtained the correlation between the critical fluence and particle radius through Mie theory and heat equation.Moreover,the size at which fused silica damage could be induced easily was discussed for each particle.We got the curves of laser damage probability for samples from the results of damage tests at last.Both the calculation and the experiment show that,by absorbing the energy of laser,with the particle radius increasing,the temperature in particle edge increases first and then decreases.Hence,only a certain range of particles can initiate damage of fused silica.The particles whose radius corresponds to critical fluence most likely cause breakdown of fused silica.The probability of damage on the fused silica sample etched decreases as its impurity density at surface decreases,thus improving the damage threshold of the fused silica.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2013年第11期2836-2840,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(60890200) 国防科技基础研究项目
关键词 熔石英 激光损伤 杂质 吸收系数 电感耦合等离子体光谱 fused silica laser-induced damage impurities absorptivity ICP-OES
  • 相关文献

参考文献18

  • 1花金荣,李莉,向霞,祖小涛.熔石英亚表面杂质颗粒附近光场调制的三维模拟[J].物理学报,2011,60(4):237-241. 被引量:3
  • 2Hopper R W,Uhlmann D R.Mechanism of inclusion damage in laser glass[J].Journal of Applied Physics,1970,41(10):4023-4037.
  • 3Feit M D,Campbell J H,Faux D,et al.Modeling of laser-induced surface cracks in silica at 355 nm[C]//Proc of SPIE.1998,3244:350.
  • 4Neauport J,Lamaignere L,Bercegol H.Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm[J].Optics Express,2005,13(25):10163-10171.
  • 5欧阳升,刘志超,许乔.熔石英表面加工引入金属微粒的三倍频激光损伤机制[J].强激光与粒子束,2011,23(9):2423-2427. 被引量:3
  • 6Stevens-Kalceff M A,Stesmans A,Joe Wong.Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm[J].Applied Physics Letters,2002,80(5):757-760.
  • 7Gao Xiang,Feng Guoying,Han Jinghua,et al.Investigation of laser-induced damage by various initiators on the subsurface of fused silica[J].Optics Express,2012,20(20):22095-22101.
  • 8Kozlowski M R,Carr J,Hutcheon I,et al.Depth profiling of polishing-induced contamination on fused silica surfaces[C]//Proc of SPIE.1998,3244:365-375.
  • 9周刚,马彬,焦宏飞,丁涛,张锦龙,沈正祥,程鑫彬,王占山.1064nm高反射薄膜激光损伤阈值测量方法[J].强激光与粒子束,2011,23(4):963-968. 被引量:11
  • 10Bloembergen N.Role of cracks,pores,and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J].Applied Optics,1973,12(4):661-664.

二级参考文献55

  • 1黄进,赵松楠,吕海兵,蒋晓东,袁晓东,郑万国.利用1064nm激光预处理提高pickoff镜损伤阈值[J].强激光与粒子束,2007,19(5):728-732. 被引量:9
  • 2Sun C W, Lu Q s, Fan Z X 2002 Laser Irradiation Effect ( Beijing : National Defense Industry Press) p265 ( in Chinese).
  • 3Chen F, Meng S X 1998 Physics Progress 18 187 (in Chinese).
  • 4Liu FM, ZhangLD, LiG H2005 Chin. Phys. 14 2145 Bloembergen N 1973 Appl. Opt 12 661.
  • 5Bloembergen N 1973 Appl. Opt 12 661.
  • 6Feit M D, Rubenchik A M 2004 Proc. SPIE 5273 264.
  • 7Liu C M, ZuXT, WeiQ M, WangLM 2007 Chin. Phys. 16 95.
  • 8XueSW, ZuXT2007 Chin. Phys. 16 1119.
  • 9Liao L S, Bao X M, Zheng ~K Q, Li N S, Min N B 1996 Appl. Phys. Lett. 68 850.
  • 10Trupke T, Green M A, Wttrfel P, Ahermatt P P, Wang A, Zhao J, Corkish R 2003 J. Appl. Phys. 94 4930.

共引文献17

同被引文献41

  • 1王毅,许乔,柴立群,陈宁,朱湘琴.熔石英表面划痕附近电磁场分布模拟分析[J].强激光与粒子束,2005,17(1):67-70. 被引量:24
  • 2杨浩,冯国英,韩敬华,王超,苏娟,许乔,朱启华.光学元件的表面划痕及其对入射激光的调制作用[J].强激光与粒子束,2006,18(11):1832-1836. 被引量:6
  • 3黄晚晴.大口径熔石英元件表面激光损伤特性研究[D].绵阳:中国工程物理研究院,2009.7-33.
  • 4Bennett H E, Glass A J, Guenther A H, et al. Laser induced damage in optical materials= twelfth ASTM symposium J . Applied Optics , 1981, 20(17) :3003-3019.
  • 5Manenkov A A. Fundamental mechanisms of laser-induced damage in optical materials: understanding after 40 years of research[C]//Flori- da: International Society for Optics and Photonics. 2008: 713202.
  • 6Bloembergen N. Laser-induced electric breakdown in solids[J]. Quantum Electronics, 1974, 10(3).- 375-386.
  • 7Koldunov M F, Manenkov A A, Pokotilo I I.. Laser-induced damage criterion[C]//Florida: International Society for Optics and Photonics, 1997:506-525.
  • 8Koldunov M F, Manenkov A A. Recent progress in theoretical studies of laser-induced damage (LID) in optical materials: fundamental properties of I.ID threshold in the wide-pulse-width range from microseconds to femtoseconds[C]//Florida: International Society for Optics and Photonics, 1999: 212-225.
  • 9Rajeev P P, Gertsvolf M, Corkum P B, et al. Field dependent avalanche ionization rates in dielectrics[J]. Physical Review Letters, 2009, 102: 083001.
  • 10Manenkov A A. Fundamental mechanisms of laser induced damage in optical materials today's state of understanding and problems[J]. Optical Engineering, 2014, 53: 010901.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部