摘要
Retinex模型是人类视觉对亮度和色彩的感知模型,多尺度Retinex算法具有动态范围压缩大、色彩恒常性、色彩保真度高等特点,被广泛运用于低光照图像的增强。提出一种新的图像增强算法,首先用混合灰度变换函数替代传统的灰度变换函数,对图像做不同尺度的Retinex变换,并分解重复的频带信息,对各个独立的频带分别进行增强。然后引入图像融合的思想,将不同尺度Retinex图像的每个像素点都赋予不同的权重。最后得到输出图像。实验结果证明,本算法可有效增强图像的对比度,得到的图像清晰度高,色彩恢复好。
The Retinex model refers to human perception of lightness and color. The multi-scale Retinex(MSR) algo- rithm, which is high dynamic range, color constancy and high color fidelity, is widely used in low-light image enhance- ment. A novel multi-scale retinex method based on sub-band weighting fusion for image enhancement was proposed. First, hybrid intensity transfer function was used to have retinex outputs in different scales. Then the retinex outputs were decomposed into non-overlapping spectral sub-bands. Image enhancement was processed in each sub-band. Final, the resulted image was fused by weighting every point of each Retinex outputs. The experimental results show that the proposed algorithm effectively enhances the contrast of original image and achieve a visual-pleasing and color-vivid outputs.
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2013年第11期93-98,共6页
Journal of Shandong University(Natural Science)
关键词
MSR
子带分解
混合灰度变换函数
图像融合
图像增强
MSR
sub-band decomposition
hybrid intensity transfer function
image fusion
image enhancement