期刊文献+

G_2型量子群表示的Grbner-Shirshov基

Grbner-Shirshov Basis Represented by G_2-Type Quantum Group
下载PDF
导出
摘要 用单李代数的泛包络代数表示的Grbner-Shirshov基方法,也就是Grbner-Shirshov对(pair)方法,来构造G2型量子群表示的Grbner-Shirshov基是非常苦难的。而用双自由模方法来构造G2型量子群的有限维不可约表示的Grbner-Shirshov基是非常方便的;以已知的G2型量子群的Grbner-Shirshov基为基础,用双自由模方法构造G2型量子群的不可约表示的Grbner-Shirshov基。 The construction of Grobner-Shirshov Basis represented by G2-type quantum group by Grobner- Shirshov Basis method represented by universal enveloping algebras of simple Lie algebras, i.e. Grobner-Shirshov pair method, is very difficult, however, the construction of Grobner-Shirshov Basis represented by finite dimensional irreducible of G2-type quantum group by double free modules is convenient. By taking Grobner- Shirshov Basis of G2-type quantum group as the basis, this paper uses double free modules method to construct Grobner-Shirshov Basis of irreducible representation of G2-type quantum group.
出处 《重庆工商大学学报(自然科学版)》 2013年第11期1-5,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 国家自然科学基金(11061033)
关键词 量子群 Grsbner—Shirshov基 合成 双自由模 最高权模 quantum group Grobner-Shirshov Basis composition double free modules the highest weight module
  • 相关文献

参考文献11

  • 1BUCHBERGER B.An algorithm for finding a basis for the residue class ring of a zero dimensional polynomial ideal[ M ] .Austria: University of Innsbruck, 1965.
  • 2BERGMAN G M.The diamond lemma for ring theory [J]. Adv Math, 1978(29) :178-218.
  • 3SHIRSHOW A I.Some algorithmic problems for Lie algebras [J] .Siberian Math J, 1962(3) :292-296.
  • 4BOKUT L A. Imbeddings into simple associative algebras [ J] .Algebra and Logic, 1976(15) :117-142.
  • 5BOKUT L A, MALCOLMSON p. Groebner-Shirshov bases for quantum enveloping algebras [ J ] .Israel Journal of Mathematics, 1996 (96) :97-113.
  • 6REN Y H,OBUL A.Gribner-Shirshovbasis of quantum group of type G2[J] .Comm Algebra,2011,39(5) :1510-1518.
  • 7KANG S J, LEE K H. Grbner-Shirshovbasis for Representation Theory [ J ].Korean Math Soc, 2000,37 ( 1 ) : 55-72.
  • 8KANG S J, LEE K H. Groebner-Shirshov bases for irreducible s/n+lmodules [ J ].Algebra, 2000:1-20.
  • 9CHIBRIKOV E S.On free Lie conformal algebras [ J ] .Vestnik Novosibirsk State University, 2004,4( 1 ) :65-83.
  • 10CHEN Q Y,CHEN Y S, ZHONG C Y. Composition-Diomond Lemma for Modules [J] .Czechoslovak Math J,2010,60(135) :59-76.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部