期刊文献+

交叉口瞬时交通流量预测的自适应卡尔曼滤波模型 被引量:5

an Improved Adaptive Kalman Filter Model for Short-term Traffic Flow Prediction at Intersection
下载PDF
导出
摘要 提出了一个交叉口瞬时交通量预测的带时间窗自适应卡尔曼滤波模型(Adaptive Kalman Filter Model,AKFM);详细阐述了模型的理论基础、建立过程、推导步骤及状态转移矩阵;并通过C++实现了AKFM和传统卡尔曼滤波模型(Traditional Kalman Filter Model,TKFM);最后,通过实际交叉口的检测数据对该模型与传统卡尔曼滤波模型进行了比较分析及评价。实验结果表明,AKFM模型是稳定有效的,预测精度优于TKFM。 The paper presents an adaptive Kalman filter model (AKFM) with time-window for short-term traffic flow prediction at intersection.Then it studies the theoretical basis,the modeling process,the derivation steps and state transition matrix and implements the AKFM and Traditional Kalman Filter Model(TKFM) by C + +.Finally,in experimental study,the paper shows that AKFM is stable,adaptable and effective.It can promote the prediction efficiency and lower the relative error of prediction in limited time and prediction accuracy is better than TKFM.
出处 《公路工程》 北大核心 2013年第5期107-111,共5页 Highway Engineering
基金 国家自然科学基金(61004113和71072027) 江苏省高校自然科学基金(12KJB580005)
关键词 瞬时交通流预测 卡尔曼滤波器 时间窗口 自适应方法 状态转移矩阵 Short-term traffic flow prediction Kalman filter Time-window Adaptive method State transition matrix
  • 相关文献

参考文献11

  • 1张培林,赵弘尧.基于混沌理论的高速公路网短时交通流量预测研究[J].公路工程,2011,36(4):179-182. 被引量:11
  • 2Davis,G. A. ,N. L. Nihan. Nonparametrie Regression and Short Term Freeway Traffic Forecasting[ J ]. Journal of Transportation Engineering,Vol. 117,No. 2,1991, p178 - 188.
  • 3J. Kwon, B. Coifman, P. J. Bickel. Day-to-day Travel Time Trends and Travel Time Prediction from Loop Detector Data [Z]. In Transportation Besearch Record: Journal of the Trans- portation Research Board, No. 1717, Transportation Research Board of the National Academies, Washington, D. C. ,2000, p120 - 129.
  • 4Ishak,S. , H. A1-Deek. Performance Evaluation of a Short-Term Time-Series Traffic Prediction Model [J]. ASCE Journal of Transportation Ensineering, Vol. 128, No. 6,2002, p490 - 498.
  • 5Head, K. L. An Event-Based Short-term Traffic Flow Prediction Model. In Transportation Research Record[J]. Journal of the Transportation Research Board,No. 1510,Transportation Re- search Board of the National Academies, Washington, D.C. , 1995, p45 -52.
  • 6Rahman,S. and R. Bhatnagar. An Expert System Based Algo- rithm for Short Term Load Forecast[ Z]. IEEE Transaction on Power System, Vol. 3, No. 2,1988, p329 - 399.
  • 7Wang Jin. Studies on Short-term Traffic Flow Forecasting Mod- els and Methods[ Z]. Doctor thesis, Department of Civil Engi- neering,Tsinghua University. 2005.
  • 8Eleni I. Vlahogianni, Matthew G. Karlaftis, John C. Golias. Op- timized and Meta-Optimized Neural Networks for Short-Term Traffic Flow Prediction : A Genetic Approach [ Z ]. Transporta- tion Research Part C.2005(13) : p211 - 234.
  • 9Zheng,W. Z. ,Lee,D. H. ,& Shi,Q. X. (2006). Short-term Freeway Traffic Flow Prediction: Bayesian Combined Neural Network Approach [ J ]. Journal of Transportation Engineering, 132(2) ,pl14 - 121.
  • 10S. Sun, C. Zhang, and G. Yu, A Bayesian Network Approach to Traffic Flow Forecasting, IEEE Trans [ Z ]. Intell. Transp. Syst. ,2006,7( 1 ) ,p124 - 132.

二级参考文献9

共引文献10

同被引文献39

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部