期刊文献+

车辆颜色识别方法研究 被引量:4

Research on Recognition of Vehicle Color
下载PDF
导出
摘要 车辆颜色识别对车辆的识别与搜索、完善和增强智能交通系统功能具有重要意义。通过对颜色表示方法的深入研究,使用特殊的颜色空间合并与分解方法,提出了在室外正常光照条件下基于支持向量机的车辆颜色识别的方法。该方法克服了车辆颜色识别过程中多种颜色产生的混叠问题,将车辆颜色分为7个种类,解决了样本分布不均及光照对车辆颜色的影响,提高了车辆颜色识别的准确率和效率。 Vehicle color recognition is important to identify and search the vehicle to improve and enhance the function of intelligent transportation system. In this paper,a new vehicle color recognition method is presented based on depth study of the color representation and special color combined with the decomposition method and support vector machine in normal outdoor lighting condition. The algorithm overcomes the aliasing problem in a variety of color in the identification process to divide the vehicle color into seven categories. The uneven distribution of sample and influence of light is solved. The accuracy and efficiency of the vehicle color recognition is improved.
作者 赵红波 张涵
出处 《电视技术》 北大核心 2013年第23期207-209,233,共4页 Video Engineering
基金 教育部留学回国人员科研启动基金项目(教外司留[2011]508号) 河南重点科技攻关项目(112102210373)
关键词 颜色表示 支持向量机 车辆颜色识别 color representation support vector machine vehicle color recognition
  • 相关文献

参考文献10

  • 1CONNOLLY J F, GRANGER E, SABOURIN R. An adaptive classifica- tion system for video-based face recognition [ J ]. Information Seiences, 2012,192( 1 ) :50-70.
  • 2LOWED. Distinctive image features from seale-invariant key points[ J]. International Journal of Computer Vision, 2004,60 ( 2 ) : 91 - 110.
  • 3XIE Z,LIU G,FANG Z. Face recognition based on combination of haman perception and local binary pattern [ J ]. Lecture Notes in Computer Sci- ence,2012,72(2) :365-373.
  • 4LU Jiwen,TAN Yepeng,WANG Gang. Discriminative multi-manifold a- nalysis for face recognition from a single training sample per person[ EB/ OL]. [2013-04-10]. http://dl, acm. org/citation, elm? id =2356324.
  • 5CAO Z,YIN Q,TANG X,et al. Face recognition with learning-based de- scriptor[ EB/OL]. [ 2013 -04 - 10 ]. http://wenku, baidu, corn/view/ 34b38adb6fl aff0Obed51 ca4. html.
  • 6PINTO N,COX D. Beyond simple features: a large-scale feature search approach to unconstrained face recognition [ EB/OL ]. [ 2013 -04-10 ]. http://citeseerx, ist. psu. edu/viewdoc/stmmam~? doi = 10. 1. 1. 188. 1456.
  • 7KUMAR N, BERG A C, BELHUMEU P N, et al. Attribute and simile classifiers for face verification [ EB/OL ]. [ 2013-04-10 ]. http ://citese- erx. ist. psu. edu/viewdoc/summary? doi = 10.1.1. 153. 2194.
  • 8WOLF L, HASSNER T,TAIGMAN Y. Similarity scores based on back- ground samples [ EB/OL]. [ 2013-04-10 ]. http://citeseerx, ist. psu. edu/viewdoc/summary? doi = 10.1.1. 149. 9354.
  • 9NGUYEN H V, BAIL. Cosine similarity metric learning for face verifica- tion[ EB/OL1. [ 2013 -04-10 ]. http ://link. springer, corn/chapter/10. 1007 % 2F978-3--642 -19309~5_55.
  • 10WRIGHT J,YANG A Y, GANESH A, et al. Robust face recognition via sparse representation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2009,31 (2) :210-227.

同被引文献19

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部