摘要
研究一类具非线性扩散项的脉冲时滞双曲系统,利用新的处理非线性扩散项的技巧及脉冲微分不等式,建立了该类系统在Dirichlet边值条件下所有解振动的若干新的充分性判据.所得结果充分反映了脉冲和时滞在系统振动中的影响作用.
A class of impulsive delay hyperbolic systems with nonlinear diffusion term is studied. By using a new technique of treating nonlinear diffusion term and impulsive differential inequalities, some new sufficient conditions are established for the oscillation of all solutions of such systems under Dirichlet boundary value condition. The obtained results fully reflect the influencial actions of impulse and delay in system oscillation.
出处
《系统科学与数学》
CSCD
北大核心
2013年第9期1024-1032,共9页
Journal of Systems Science and Mathematical Sciences
基金
湖南省自然科学-衡阳联合基金项目(11JJ9002)
湖南省自然科学基金青年项目(13JJ4098)
湖南省"十二五"重点建设学科资助项目(湘教发[2011]76号)
关键词
脉冲
双曲系统
振动
非线性扩散项
时滞
Impulse, hyperbolic system, oscillation, nonlinear diffusion term, delay.