期刊文献+

两个重要混沌系统的不等价性证明 被引量:1

THE NON-EQUIVALENCE OF TWO CHAOTIC SYSTEMS
原文传递
导出
摘要 基于平衡点理论和结式消去法,找到一个L系统它与带任何参数的Chen系统都不光滑等价,从而证明了L系统与Chen系统不光滑等价. Based on the concept and techniques of the equilibrium point and resultant elimination, we prove that the Lv system with a set of chaotic parameters is not smoothly equivalent to the Chen system with any parameters, therefore prove the non-equivalence of Lv system and Chen system.
出处 《系统科学与数学》 CSCD 北大核心 2013年第9期1113-1118,共6页 Journal of Systems Science and Mathematical Sciences
基金 国家特色专业(数学与应用数学TS11496) 数学天元基金(11226200) 安徽省高等学校省级自然科学研究项目(KJ2013Z268) 阜阳师范学院科研项目(2013FSKJ11)资助课题
关键词 CHEN系统 Lv系统 光滑等价 拓扑等价 Chen system, Lv system, smooth equivalence,topological equivalence.
  • 相关文献

参考文献7

  • 1Lorenz E N. Deterministic nonperiodic flow. J. Atmos. Sci., 1963, 20: 130-141.
  • 2Chen G. Controlling Chaos and Bifurcations in Engineering Systems. Boca Raton. FL: CRC Press, 2000.
  • 3Chen G, Dong X. From Chaos to Order: Methodologies, Perspectives, and Applications. Singa- pore: World Scientific, 1998.
  • 4Chen G R, Ueta T. Yet another chaotic attractor. Int. J. of Bifurcation and Chaos, 1999, 9: 1465-1466.
  • 5Ueta T, Chen G R. Bifurcation analysis of Chen's equation. Int. J. of Bifurcation and Chaos, 2000, 10: 1917-1931.
  • 6Lu J, Chen G R. A new chaotic attractor coined. Int. J. of Bifurcation and Chaos, 2002, 12: 659- 661.
  • 7Vanceek A, Celikovsky S. Control Systems: From Linear Analysis to Synthesis of Chaos. Londom Prentice-Hall, 1996.

同被引文献17

  • 1王发强,刘崇新.分数阶临界混沌系统及电路实验的研究[J].物理学报,2006,55(8):3922-3927. 被引量:55
  • 2王兴元,王明军.超混沌Lorenz系统[J].物理学报,2007,56(9):5136-5141. 被引量:87
  • 3LORENZ E N. Deterministic nonperiodic flowEJ3. J Atmos. Science,1963,20:130-141.
  • 4CHEN G, UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and chaos, 1999,9 (7) :t465-1466.
  • 5LU J H, CHEN G R. A new chaotic attractor coined [J]. International Journal of Bifurcation and chaos,E002,12(3) : 659-661.
  • 6LU J G. Nonlinear observer design to synchronize fractional-order chaotic system via a scalar transmitted signal[J]. Physica A, 2006, 359 : 107-118.
  • 7WU X J. Chaos in the fractional order unified system and its synchronization[J]. Chinese physics,2007,16(7) :392-401.
  • 8LIU F, TURMER I, ANH V. An Unstruetured Mesh Finite Volume Method for Model ling Saltwater Intrusionin to Coastal Aquifers [J]. Korean J Comput b- Appl Iath,2002,9(2) .391-07.
  • 9闵富红,余杨,葛曹君.超混沌分数阶L系统电路实验与追踪控制[J].物理学报,2009,58(3):1456-1461. 被引量:24
  • 10王明军,王兴元.分数阶Newton-Leipnik系统的动力学分析[J].物理学报,2010,59(3):1583-1592. 被引量:14

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部