期刊文献+

微弯河岸沿线扰动压强分布特性试验 被引量:6

Laboratory experiments on pressure distribution along sinuous riverbanks
下载PDF
导出
摘要 河岸沿线的压强梯度是河岸侧向潜流交换及河岸带物质和能量传递的主要驱动力。为揭示微弯河岸边界的扰动压强分布规律和主要影响因素,利用室内变坡水槽系统,制作不同体形的正弦形河道模型,实测一个周期波长的河岸表面压强水头,研究河岸不同分层、不同弯曲程度和不同水流条件下的沿线压强分布特性,并进行影响因素的敏感性分析。试验结果表明,在缓流条件下正弦形微弯河岸的沿线扰动压强分布呈曲线形波动,不同分层的压强分布规律大体相同。在河岸弯曲程度较小时,压强波动的峰值与谷值分别出现于凹岸和凸岸的曲率最大位置。河岸沿线扰动压强的变化主要受河岸振幅与波长比a/λ和来流弗劳德数Fr的影响,敏感性分析表明a/λ比Fr的影响更为显著。 The pressure gradient along riverbanks is one of the main driving forces for lateral hyporheic exchange, substance and energy transport in riparian zones. In order to reveal the discipline and main factors of disturbed pres- sure distribution along sinuous riverbanks, series of experiments are carried out in an adjustable slope test flume. Dif- ferent geometries of sine-shaped channel models are built and put into the flume to form different boundaries of river- banks. The pressure head data are measured in a wavelength range of riverbanks to study the characteristics of pres- sure distributions in different layers, different sinuosity of riverbanks and different hydraulic conditions. A sensitivity analysis of influence factors is also conducted. The experimental results show that the pressure distribution along the sinusoidal riverbank is a curved shape. The pressure distributions in different layers are almost the same. When the ri- verbank sinuosity is relative low, the pressure variation reaches the crest value and trough value respectively at the most concave and convex location of riverbanks. Under subcritical conditions, the disturbed pressure along the river- bank is mainly affected by the bank amplitude-to-wavelength ratio a/A and Froude number Fr. The sensitivity analysis reveals that the influence of a/A is relatively strong.
出处 《水科学进展》 EI CAS CSCD 北大核心 2013年第6期855-860,共6页 Advances in Water Science
基金 国家自然科学基金资助项目(40871050) 江苏省研究生科研创新项目(CX10B-212Z)~~
关键词 河岸 正弦形 水槽试验 压强分布 riverbank sine-shape flume experiments pressure distribution
  • 相关文献

参考文献15

  • 1BOULTON A J, FINDLAY S, MARMONIER P, et al. The functional significance of the hyporheic zone in streams and rivers [ J]. Annual Review of Ecology and Systematies, 1998, 29: 59-81.
  • 2金光球,李凌.河流中潜流交换研究进展[J].水科学进展,2008,19(2):285-293. 被引量:60
  • 3RUNKEL R L, MCKNIGHT D M, RAJARAM H. Modeling hyporhcic zone process [J]. Advances in Water Resources, 2003, 26 (9) : 901-905.
  • 4SAWYER A H, CARDENAS M B, BUTTLES J. Hyporheie temperature dynamics and heat exchange near channel-spanning |ogs [ J ]. Water Resources Research, 2012, 48 : W01529.
  • 5HARVEY J W, WAGNER B J, BENCALA K E. Evaluating the reliability of the stream tracer approach to characterize stream-sub- surface water exchange [ J ]. Water Resources Research, 996, 32 (8) : 2441-2451.
  • 6BRUNKE M, GONSER T. The ecological significance of exchange processes between rivers and groundwater [ J ]. Freshwater Biolo- gy, 1997, 37(1) :1-33.
  • 7ELLIOTT A, BROOKS N H. Transfer of non-sorbing solutes to a streambed with bed forms: Theory [ J]. Water Resources Re- search, 1997, 33(1): 123-136.
  • 8PACKMAN A 1, SALEHIN M, ZARAMELLA M. Hyporheic exchange with gravel beds: Basic hydrodynamic interactions and bed- form-induced advective flows [ J ]. Journal of Hydraulic Engineering, 2004, 130 (7) : 647-656.
  • 9BUFFINGTON J M, TONINA D. Hyporheic exchange in mountain rivers: 1] : Effects of channel morphology on mechanics, scales, and rates of exchange [J]. Geography Compass, 2009, 3(3):1038-1062.
  • 10林俊强,严忠民,夏继红.弯曲河岸侧向潜流交换试验[J].水科学进展,2013,24(1):118-124. 被引量:19

二级参考文献63

  • 1胡勘平.松花江水污染生态环境影响评估取得阶段性成果[J].环境保护,2006,34(02A):1-1. 被引量:1
  • 2Jonsson. Effect of hyporheic exchange on conservative and reactive solute transport in streams, www. diva - portal.org/diva/getI)ocument? umnbn-se-uu-diva - 3522 - 1--fulllext. pdf, 2003.
  • 3Packman A I, Marion A, Zaramella M, et al. Development of layered sediment structure and its effects on pore water transport and hyporheic exchange[J]. Water, Air, & Soil Pollution: Focus, 20(0, 12(6): 69- 78.
  • 4Boulton A J, Findlay S, Mannonier P, et al. The functional significance of the hyporheic zone in streams and rlvers[J]. Annual Review of Ecology and Systematics, 1998, 29:59 - 81.
  • 5Triska F J, Kennedy V C, Avanzino R J, et al. Retention and transport of nutrients in a third-order stream in northwestern California: hyporheic processes[J]. Ecology, 1989, 70:1 894- 1905.
  • 6Runkel R L, McKnight D M, Rajaram H. Modeling hyporheic zone processes [J]. Advances in Water Resources, 2003, 26(9) : 901 - 905.
  • 7Patschke S N. Hyporheic exchange in a forested headwater stream[D]. Canada: Simon Fraser University, 1999.
  • 8Precht E, Franke U, Polerecky L, et al. Oxygen dynamics in permeable sediments with wave-driven pore water exchange[J]. Limnology and Oceanography, 2004, 49(3): 693-705.
  • 9Huettel M, Roy H, Precht E, et al. Hydrodynamical impact of biogeochemical processes in aquatic sediments[J]. Hydrobiologia, 2003, 494 : 231 - 236.
  • 10Packman A I, Brooks N H. Hyporheic exchange of solutes and colloids with moving bedforms[ J]. Water Resources Research, 2001,37(10) : 2591 - 2605.

共引文献67

同被引文献90

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部