期刊文献+

特定领域概念间关系自动抽取方法 被引量:2

Hybrid Automatic Extraction Method of Relationships Between Specific Domain Concepts
原文传递
导出
摘要 以突发事件领域为例,针对本体构建中领域概念间关系自动抽取的问题,提出了一种混合的领域概念间关系自动抽取方法,将领域概念间的关系分成关系类型未知和已知2种情况,并分别基于扩展关联规则和关系抽取规则进行抽取,同时提出了构造和自动扩展关系抽取规则的方法.实验结果表明,所提出的方法是可行和有效的,不仅能获得特定领域中存在的丰富的语义关系,而且能获得较好的性能. Aiming at automatic extraction of relationships between domain concepts in ontology construc- tion, a hybrid automatic extraction method is proposed. The relationships existing in domain concepts are classified into two kinds: one is the relationships with unknown types extracted by the extended associa- tion rule; the other is the relationships with the known types extracted by extraction rules. Meanwhile, the formation and expansion methods of extraction rules are presented. Experiments demonstrate that the proposed method is feasible and effective. It can not only obtain rich relationships in special domain, but also obtain better performance.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2013年第5期81-85,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(91024001 61070142 61303232) 北京市自然科学基金项目(4111002) 河南省教育厅基金项目(13A413750 13A413747) 河南省自然科学基金项目(132300410393)
关键词 混合关系抽取算法 扩展关联规则 抽取规则 hybrid extraction algorithm of relationships extended association rule extraction rule
  • 相关文献

参考文献7

  • 1Matteo Gaeta, Francesco Orciuoli, Stefano Paoiozi et al. Ontology extraction for knowledge reuse: the e-learn- ing perspective [ J ]. IEEE Transactions on Systems, Man, and Cybernetics--Part A: Systems and Httman, 2011, 41(4) : 798-809.
  • 2张素香,李蕾,谭咏梅.特定领域下关系模板的研究[J].北京邮电大学学报,2006,29(5):79-83. 被引量:3
  • 3Mari-Sanna Paukkeri, Alberto Prez Garcfa-Plaza, Victor Fresno, et al. Learning tt/onomy from a set of text doc-uments [ J]. Applied Sofi Computing, 2012, 12 (3) : 1138-1148.
  • 4Vllaverde J, Persson A, Godoy D, et al. Supporting the discovery and labeling of non-taxonomic relationships in ontology learning [ J]. Expert Systems with Applications, 2009, 36(7) : 10288-10294.
  • 5Francesco Colace, Massimo De Santo. Ontology for E- learning: a bayesian approach [ J]. IEEE Transactions on Education, 2010, 53(2) : 223-233.
  • 6Wang Wei, Payam Barnaghi, Andrzej Bargiela. Probabi- listie topic models for learning terminological ontologies [J]. IEEE Transactions on Knowledge and Data Engi- neering, 2010, 22(7) : 1028-1040.
  • 7Hou Xin, Ong S K, Nee A Y C, et al. GRAONTO: a graph-based approach for automatic construction of do- main ontology [ J ]. Expert Systems with Applications, 2011 , 38(9) : 11958-11975.

二级参考文献6

  • 1钟义信.自然语言理解的全信息方法论[J].北京邮电大学学报,2004,27(4):1-12. 被引量:42
  • 2车万翔,刘挺,李生.实体关系自动抽取[c]∥第一届全国内容安全与信息检索学术会议.上海:[s.n.],2004.
  • 3Chieu H, Ng H. A maximum entropy approach to information extraction from semi-structured and free text[C]//Proceedings of the Eighteenth International Conference on Artificial Intelligence (AAAI-02). Edmonton: [ s.n. ], 2002.
  • 4Dmitry Zelenko, Chinatsu Aone, Anthony Richardella.Kernel methods for relation extraction [J ]. Journal of Machine Learning Research 3, 2003: 1083-1106.
  • 5Yangarber R, Grishman R, Tapanainen P, et al. Unsupervised discovery of scenario-level patterns for information extraction[C]// Proceedings of the Applied Natural Language Processing Conference (ANLP 2000). WA:Seattle, 2000.
  • 6李蕾,孙春葵,杨晓兰,钟义信.一种特定领域中文自动摘要系统[J].北京邮电大学学报,2000,23(1):6-10. 被引量:5

共引文献2

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部