期刊文献+

RBF神经网络预测焦化企业煤气产量

Radial Basis Function Neural Network for Gas Output Prediction in Coking Industry
下载PDF
导出
摘要 对焦炉的发生和消耗特性进行分析,找出影响煤气产量的主要影响因素,并建立径向基函数(RBF)神经网络模型进行预测,实验表明:RBF模型具有较强的非线性逼近能力,能较真实地反映煤气产量和影响因素之间的非线性关系,预测效果要优于BP神经网络模型。 The characteristics of process of gas production and consumption were analyzed to identify main fac- tors which influencing gas production and to build mathematical model based on these factors to predict gas output. The experimental results show that RBF neural network has very strong nonlinear approximation abili- ty. It can reflect nonlinear relationship between gas production and influential factors.
出处 《化工自动化及仪表》 CAS 2013年第3期334-337,共4页 Control and Instruments in Chemical Industry
基金 中国科学院重点部署项目(kgzd-ew-302-4)
关键词 煤气产量预测 炼焦 影响因素RBF神经网络 coking, gas production prediction, influential factors, RBF neural network
  • 相关文献

参考文献6

  • 1樊泉贵,阎维平.锅炉原理[M].北京:中国电力出版社,2004,1.
  • 2王太炎.焦炉煤气开发利用的问题与途径[J].燃料与化工,2004,35(6):1-3. 被引量:25
  • 3Bishop C M. Neural Networks for Pattern Recognition [ M ]. Oxford, UK : Oxford University Press, 1995 : 164 - 191.
  • 4Flyera N, Fomberg B. Radial Basis Functions: Devel- opments and Applications to Planetary Scale Flows [ J]. Computers and Fluids ,2011,46( 1 ) :23 - 32.
  • 5Venkatesan P, Anitha S. Application of a Radial Basis Function Neural Network for Diagnosis of Diabetes Mellitus [ J ]. Current Science, 2006,91 ( 9 ) : 1195 - 1199.
  • 6孟召平,田永东,雷旸.煤层含气量预测的BP神经网络模型与应用[J].中国矿业大学学报,2008,37(4):456-461. 被引量:85

二级参考文献14

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部