期刊文献+

带有非局部条件Caputo分数阶差分方程解的存在性

Existence and Uniqueness of Solutions about Caputo Fractional Difference Equation with Nonlocal Conditions
下载PDF
导出
摘要 考虑如下Caputo分数阶差分方程△νCy(t)=-(ft+ν-1,y(t+ν-1))在非局部条件y(ν-3)=φ(y),△y(ν+b)=ψ(y),△2y(ν-3)=λ(y)下的边值问题(BVP),其中t∈[0,b],f:[ν-2,ν-1,…,ν+b]Nν-2×R→R,f为连续函数,φ,ψ,λ∈C([ν-3,ν+b])→R,2<ν燮3。利用Banach压缩映射定理和Brouwer不动点定理得到此边值问题解存在的充分条件。 In this paper, we investigate the existence and uniqueness of solutions for fractional difference equation boundary value problem (BVP):△C^v y(t)=-f(t+v-1,y(t+v-1)) y(v-3)=φ(y),△y(v+6)=ψ(y),△^2y(v-3)=λ(y),wheret∈[0,b],f:[v-2,v-1,…,v+b]Nv-2×R→R, is continuous, φ,ψ,λ∈C([v-3,v+b])→R,2〈v≤3. We use the Banach's contraction mapping principle to deduce the uniqueness theorem. By means of the Brouwer's fixed points theorem, we obtain sufficient condition for the existence of solution to boundary value problem.
出处 《山西大同大学学报(自然科学版)》 2013年第5期25-27,53,共4页 Journal of Shanxi Datong University(Natural Science Edition)
基金 山西省高等学校科技研究开发项目[20121015] 国家自然科学基金资助项目[11271235]
关键词 Caputo分数阶差分方程 非局部条件 边值问题 不动点定理 Caputo fractional difference equation nonlocal conditions boundary value problem fixed point theorem
  • 相关文献

参考文献6

  • 1Atici F M, Sengal S. Modeling with fractional difference equations [J]. J Math Anal Apply, 2010 (369): 1 - 9.
  • 2Abdeljawad T. On Riemann and Caputo fractional differences [J]. Computers and Mathematics with Applications, 2011(3), 36 - 38.
  • 3Goodrich C S. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions [J]. Comput Math Appl, 2011(61): 191 - 202.
  • 4Goodrich C S. On positive solutions to nonlocal fractional and integer-order difference equations [J]. Appl Anal Discrete Math, 2011 (5): 122- 132.
  • 5Goodrich C S. Existence of a positive solution to a system of discrete fractional boundary value problems [J]. Comput Math Appl, 2011(217): 740 - 4753.
  • 6Atici F M, Eloe P W. Two-point boundary value problems for finite fractional difference equations [J]. J Difference Equ Appl, 2011, 17(4)): 445 -456.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部