摘要
考虑如下Caputo分数阶差分方程△νCy(t)=-(ft+ν-1,y(t+ν-1))在非局部条件y(ν-3)=φ(y),△y(ν+b)=ψ(y),△2y(ν-3)=λ(y)下的边值问题(BVP),其中t∈[0,b],f:[ν-2,ν-1,…,ν+b]Nν-2×R→R,f为连续函数,φ,ψ,λ∈C([ν-3,ν+b])→R,2<ν燮3。利用Banach压缩映射定理和Brouwer不动点定理得到此边值问题解存在的充分条件。
In this paper, we investigate the existence and uniqueness of solutions for fractional difference equation boundary value problem (BVP):△C^v y(t)=-f(t+v-1,y(t+v-1)) y(v-3)=φ(y),△y(v+6)=ψ(y),△^2y(v-3)=λ(y),wheret∈[0,b],f:[v-2,v-1,…,v+b]Nv-2×R→R, is continuous, φ,ψ,λ∈C([v-3,v+b])→R,2〈v≤3. We use the Banach's contraction mapping principle to deduce the uniqueness theorem. By means of the Brouwer's fixed points theorem, we obtain sufficient condition for the existence of solution to boundary value problem.
出处
《山西大同大学学报(自然科学版)》
2013年第5期25-27,53,共4页
Journal of Shanxi Datong University(Natural Science Edition)
基金
山西省高等学校科技研究开发项目[20121015]
国家自然科学基金资助项目[11271235]
关键词
Caputo分数阶差分方程
非局部条件
边值问题
不动点定理
Caputo fractional difference equation
nonlocal conditions
boundary value problem
fixed point theorem