期刊文献+

组移动模式挖掘中轨迹聚类的置信区间法 被引量:1

Confidence-interval approach of trajectory clustering for group movement pattern mining of moving objects
下载PDF
导出
摘要 在借鉴空间数据挖掘技术的基础上,定义了移动对象轨迹之间的时态距离和平均距离,提出了标准差法和置信区间法两种轨迹聚类算法。两种方法能够找出所有具有相似轨迹的对象对,在不同距离采样点数的基础上配合使用两种方法能够明显降低轨迹聚类算法的时间复杂度。基于标准差法和置信区间法的轨迹聚类算法在仿真数据集和真实数据集进行了验证。表明两种方法能够为其他轨迹聚类算法进行数据筛选,筛选后的数据量将大大减少,从而可提高算法效率。 Based on the spatial data mining algorithms, the temporal distance and average distance of moving objects are defined in this paper, and then sample variance approach and confidence-interval approach for trajectory clustering are provided. The two approaches can discover all the object pairs that have similar trajectories at certain time intervals. Using different sampling granu- larities of trajectory distance can greatly depress the time complexity of the trajectory clustering algorithm. The clustering algo- rithm based on sample variance approach and confidence-interval approach is tested both on synthetic and real datasets. It is indi- cated that the two approaches can also be used as pretreatment methods for other trajectory clustering algorithms, and can greatly reduce the data amount being searched.
出处 《中国科技论文》 CAS 北大核心 2013年第10期981-985,共5页 China Sciencepaper
基金 航空科学基金资助项目(20111052010)
关键词 知识工程 轨迹聚类 组模式挖掘 置信区间 时空数据挖掘 knowledge engineering trajectory clustering group pattern mining confidence interval spatio-temporal data mining
  • 相关文献

参考文献13

  • 1Morzy M. Mining frequent trajectories of moving objects for location prediction [C]//Machine Learning and Data Mining in Pattern Recognition. Leipzig, Gerrnany Springer, 2007 667-680.
  • 2Tsai Hsiaoping, Yang Denian, Chen MingsyarL Mining group movement patterns for tracking moving objects ef- ficiently [J]. IEEE Trans Knowl Data Eng, 2011, 23 (2) : 266-281.
  • 3Cheema M, Brankovic L, Lin Xuemin, et al. Continu ous monitoring of distance-based range queries [J]. IEEE Trans Knowl Data Eng, 2011, 23 (8)1182-1199.
  • 4Agrawal R, Srikant R. Mining sequential patterns [C]// Philip S Y, Arbee L P. Proceedings of the llth International Conference on Data Engineering. Taipei Taiwan: IEEE Computer Society Press, 1995 3-14.
  • 5Pei Jian, Han Jiawei, Mortazavi A B, et al. Mining se- quential patterns by pattern-growth: the prefix span ap- proach [J]. IEEE Trans Knowl Data Eng, 2004, 16 (11) : 1424-1440.
  • 6Peng Wenchih, Chen Mingsyan. Developing data alloca- tion schemes by incremental mining of user moving pat- terns in a mobile computing system [J]. IEEE Trans Knowl Data Eng, 2003, 15(1): 70-85.
  • 7Tseng Vincents, Lin Kawuuw. Energy efficient strate- gies for object tracking in sensor networks: a sata mining approach [J]. J Syst Software, 2007, 80(10): 1678-1698.
  • 8Li Yifan, Han Jiawei, Yang Jiong. Clustering moving objects [C]// Kim W, Ron K, Johannes G. ACM SIGKDD. Seattle Washington USA: ACM, 2004: 617- 622.
  • 9Wang Yida, Lira Eepeng, Hwang Sanyih. Efficient min- ing of group patterns from user movement data [J]. Data Knowl Eng, 2006, 57(3): 240-282.
  • 10] Nanni M, Pedreschi D. Time-focused clustering of traj- ectories of moving objects [J]. J Intell Inform Syst, 2006, 27(3).- 267-289.

二级参考文献23

  • 1Alsabti K, Ranka S, Singh V. An efficient k-means clustering algorithm [Z]. Citeseer, 1997.
  • 2Guha S, Rastogi R, Shim K. CURE : an efficient clustering algorithm for large databases. In : Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 73 -84.
  • 3Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In : Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996. 226 -231.
  • 4Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining application. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle : ACM Press, 1998. 94- 105.
  • 5Friedman J H, Bentley J L, Finkel R A. An algorithm for finding best matches in logari - thmic expected time [ J ]. ACM Transactions on Mathematical Software, 1977, ( 3 ) 3 : 209--226.
  • 6Li Y, Han J, Yang J. Clustering moving objects [C] //Proc of the 10th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2004:617-622.
  • 7Nehme R V, Rundensteiner E A. SCUBA: Scalable cluster- based algorithm for evaluating continuous spatio-temporal queries on moving objects [G] //LNCS 3896: Proc of the 10th Int Conf on Extending Database Technology. Berlin: Springer, 2006:1001-1019.
  • 8Jensen C S, Lin D, Ooi B C. Continuous clustering of moving objects[J]. IEEETKDE, 2007, 19(9): 1161-1174.
  • 9Lee J, Han J, Li X, et al. TraClass: Trajectory classification using hierarchical region-based and trajectory- based clustering [J]. PVLDB, 2008, 1(1): 1081-1094.
  • 10Li Y, Yang J, Han J. Continuous K-Nearest neighbor search for moving objects [C] //Proc of Int Conf on Scientific and Statistical Database Management ( SSDBM'04 ). Los Alamitos, CA: IEEE Computer Society, 2004:123-126.

共引文献4

同被引文献20

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部