期刊文献+

新生期去胸腺小鼠自身免疫性卵巢疾病外周血中Treg细胞的变化及意义 被引量:3

Changes of Treg cells in peripheral blood of autoimmune ovarian disease in day 3 thymectomized mice
下载PDF
导出
摘要 目的探讨CD4+CD25+调节性T细胞(regulatory T cells,Treg)在小鼠自身免疫性卵巢疾病(autoimmune ovarian disease,AOD)发生与发展过程中的变化及意义。方法出生第3天乳鼠摘除胸腺(thymectomized on day 3,D3tx)建立D3tx组和假手术组,免疫组织化学观察小鼠卵巢改变,ELISA检测性激素变化,流式细胞学检测术后小鼠外周血中Treg及T细胞亚群比例的变化。结果胸腺切除后5周卵巢出现炎细胞浸润及卵泡闭锁,血清FSH升高,E2下降。小鼠外周Treg在术后1~3周达到高峰后快速下降,缓慢下降直至术后9周仍高于对照组(P<0.05);AOD发生后,CD3+T细胞明显减低(P<0.001),CD4+T减低(P<0.05),CD8+T无明显统计学差异(P>0.05),CD4+/CD8+T细胞比例有下降趋势(P>0.05),但无统计学意义。结论 Treg参与AOD的发病过程,推测可能在AOD发病初期具有潜在保护作用。 Female Balb/c mice thymectomized on day 3 (D3tx) develop autoimmune ovarian disease (AOD) with ovarian inflammation and atrophy, which is a T cell-mediated chronic inflammatory disease leading to premature ovarian failure. Regulatory T cells (Treg) have been recently described as a specific subpopulation of T lymphocytes, which play a major role in the prevention of autoimmunity. However, the role of Treg cells in the experimental AOD has attracted little attention. In our study, we aimed to investigate the changs of the CD4+CD25+ Foxp3+ cells and T lymphocyte subsets in the peripheral blood of the D3tx mice and the sham-operation mice for evaluating the role of Treg in AOD progression. We found that the percentage of CD4+CD25+ Foxp3+ among CD4+ T cells in D3tx rapidly increased from week 1 to 2, and then decreased until week 9; when the AOD was happen, the percentage of CD3+T cells and CD4+T cells reduced. Our data suggest that the increased Treg cells maybe suppress autoimmune ovarian disease at the early phase.
出处 《免疫学杂志》 CAS CSCD 北大核心 2013年第12期1029-1032,1037,共5页 Immunological Journal
基金 国家自然科学基金(30973198)
关键词 自身免疫性卵巢疾病 胸腺切除 调节性T细胞 Autoimmune ovarian disease Thymectomized Treg
  • 相关文献

参考文献18

  • 1LaBarbera AR, Miller MM, Ober C, et al. Autoilnmune etiology in premature ovarian failure [J]. Am J Reprod Immunol Microbiol, 1988, 16(3): 115-122.
  • 2Tung KS, Smith S, Teuscher C, et al. Murine autoimmunc oophoritis, epididymoorehitis, and gastritis induced by clay 3 thymeetomy: immunopathology [J]. Am J Pathol, 1987, 126(2): 293-302.
  • 3Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self tolerance-maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25) breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Imnmnol, 1995, 155(3): 1151-1164.
  • 4Suri Payer E, Amar AZ, Thornton AM, et al. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and representa unique lineage of immunoregulatory cells[J]. J Immunol, 1998, 160(3): 1212- 1218.
  • 5Sakaguchi S, Ono M, Setoguchi R, et al. Foxp3CD25+CD4 natural regulatory T cells in dominant self-tolerance and autoimmune disease[J]. Immunol Rev, 212: 8-27.
  • 6Sharp C, Thompson C, Samy ET, et al. CD40 ligand in pathogenesis of autoimmune ovarian disease of day 3- thymectomized mice: implication for CD40 ligand antibody therapy[J]. J Immunol, 2003, 170(4): 1667-1674.
  • 7Samy ET, Wheeler KM, Roper RJ, et al. Autoimmunc disease in day 3 thymectomized mice is actively controlled by endogenous disease-specific regulatory T cells [J]. J Immunol, 2008, 180(7): 4366--4570.
  • 8Samy ET, Parker LA, Sharp CP, et al. Continuous control of autoimmune disease by antigen-dependent polyclonal CD4+CD25+regulatory T cells in the regional lymph node[J]. J Exp Med, 2005, 202(6): 771-781.
  • 9Zheng Y, Rudensky AY. Foxp3 in control of the regulatory T cell lineage[J]. Nat Immunol, 2007, 8(5): 457--462.
  • 10Hori S, Nomura T, Sakaguchi S. Control of the regulatory rI' cell development by the transcription factor Foxp3 [J]. Science, 2003, 299(5609): 1057-1061.

二级参考文献12

  • 1Meskhi A, Seif MW. Premature ovarian failure[J]. Curr Opin Obstet Gynecol, 2006, 18(4) : 418-426.
  • 2Gebbie AE. Premature ovarian failure[ J]. Menopause Int, 2008, 14 (3) : 96.
  • 3Bagavant H, Sharp C, Kurth B, et al. Induction and immunohistolo- gy of autoimmune ovarian disease in eynomolgus macaques ( Macaca fascieularis) [ J]. Am J Pathol, 2002, 160( 1 ) : 141-149.
  • 4Annunziato F, Cosmi L, Liotta F, et al. The phenotype of human TH17 cells and their precursors, the cytokines that mediate their dif- ferentiation and the role of TH 17 cells in inflammation [ J ]. Int Immu- nol, 2008, 20( 11 ) :1361-1368.
  • 5Guerin LR, Prins JR, Robertson SA. Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment[ J] .? Hum Reprod Update, 2009, 15(5) :517-535.
  • 6Ziegler S. FOXP3 : not just for regulatory T cells anymore[J]. Eur J Immunol, 2007, 37(1):21-23.
  • 7Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-produ- cing CD4^ + effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages [J]. Nat Immunol, 2005, 6 ( 11 ) : 1123- 1132.
  • 8Afzali B, Mitehell P, Lechler RI, et al. Translational mini-review series on TH17 cells: induction of interleukin-17 production by regu- latory T cells[J]. Clin Exp Immunol, 2010, 159(2) : 120-130.
  • 9Wang J, Ioan-Facsinay A, van der Voort EI, et al. Transient ex- pression of FOXP3 in human activated nonregulatory CD4^+ T cells [J]. Eur J Immunol, 2007, 37(1) :129-138.
  • 10Saito S, Nakashima A, Shima T, et al. Th1/Th2/Th17 and regulato- ry T-ceU paradigm in pregnancy[J]. Am J Reprod Immunol, 2010, 63(6) :601-610.

共引文献8

同被引文献32

  • 1van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis [J]. J Am Coil Cardiol, 2011, 58(21): 2241-2247.
  • 2Hermes HM, Cohen GA, Mehrotra AK, et al. Association of thymectomy with infection following congenital heart surgery[J]. World J Pediatr Congenit Heart Surg, 2011, 2(3): 351-358.
  • 3Adamopoulou E, Tenzer S, Hillen N, et al. Exploring the MHC "peptide matrix of central tolerance in the human thymus[J]. Nat Commun, 2013, 4: 2039.
  • 4Boehm T, Swann JB. Thymus involution and regeneration: two sides of the same coin?[J]. Nat Rev Immunol, 2013, 13(11): 831-838.
  • 5Prelog M, Egli A, Zlamy M, et al. JC and BK polyomavims-specific immunoglobulin G responses in patients thymectomized in early childhood[J]. J Clin Virol, 2013, 58(3): 553-558.
  • 6Halnon N J, Cooper P, Chen DY, et al. Immune dysregulation after cardiothoraeic surgery and incidental thymeetomy: maintenance of regulatory T cells despite impaired thymopoiesis[J]. Clin Dev Immunol, 2011, 2011: 915864.
  • 7Krenger W, Schmidlin H, Cavadini G. On the relevance of TCR Rearrangement Circles as molecular markers for thymic output during experimental graft-versus-host disease[J]. J Immunol, 2004, 172(12): 7359-7367.
  • 8Sandgaard KS, Lewis J, Adams S, et al. Antiretroviral therapy increases thymic output in children with HIV [J]. AIDS, 2014, 28(2): 209-214.
  • 9van Gent R, Schadenberg AW, Otto SA, et al. Long-term restoration of the human T-cell compartment after thymectomy during infancy: a role for thymic regeneration?[J]. Blood, 2011, 118(3): 627-634.
  • 10Samy ET, Wheeler KM, Roper RJ. Cutting edge: autoimmune disease in day 3 thymectomized mice is actively controlled by endogenous disease specific regulatory T cells[J]. J Immunol, 2008, 180(70): 4366-4370.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部