期刊文献+

三角形网格圆柱结构的轴向冲击力学性能

Mechanical behavior of triangle-grid cylindrical structure under axial impact loads
下载PDF
导出
摘要 建立了交错排布和规则排布的三角形网格圆柱结构有限元模型,分析了这两种三角形网格圆柱结构在不同工况下的动态变形模式、承载能力及能量吸收特性。研究发现:网格结构的变形均随着冲击速度的增加而向冲击端集中,胞元壁厚对变形模式的影响较小;由于变形模式的不同,交错排布的网格结构的承载能力和刚度比规则排布的大;当冲击速度较低时,交错排布和规则排布的网格圆柱结构的吸能能力相差不大,随着冲击速度的提高或胞元壁厚的增加,两种网格结构的吸能能力和吸能效率明显增强,且交错排布的网格圆柱结构表现出更强的能量吸收能力;网格结构吸收的能量绝大部分转化为变形所需的内能,而动能所占比重较小。 In order to investigate the dynamical deformation modes,load-bearing capability and energy absorption behavior under different conditions,the finite element models of grid cylindrical structures filled with stagger-arranged and regular-arranged triangular cells were established.The results indicate that the deformations of both grid structures with different arrangements are gradually concentrated to the impacted end with increasing the impact velocity,while cell wall thickness has little effect on deformation modes.The bearing capacity and stiffness of the staggered arrangement is larger than the regular arrangement because of the different deformation modes.At the lower impact velocity,the energy absorption capacities of the grid structures with different arrangements are approximately the same.With the impact velocity or the cell wall thickness increasing,both of the grid structures have stronger energy absorption capabilities and efficiencies,and the grid structure with stagger-arranged cells has better energy absorption capability than one with regular-arranged cells.Most of the energy absorbed by grid structure is converted into internal energy,while kinetic energy has a less proportion.
出处 《振动工程学报》 EI CSCD 北大核心 2013年第5期678-686,共9页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(10872011 11172012) 北京市自然科学基金资助项目(3092006) 教育部博士点基金资助项目(20101103110005)
关键词 网格结构 冲击 变形模式 承载能力 能量吸收 grid structure impact deformation mode load-bearing capability energy absorption
  • 相关文献

参考文献23

  • 1Gibson L J,Ashby M F. Cellular Solids= Structure and Properties[M] Pergamon Cambridge University Press, 1988,.
  • 2Grenestedt J L. Effective elastic behavior of some models for perfect cellular solids [J]. International Journal of Solids and Structures, 1999, 36. 1 471-- 1 501.
  • 3Wu E, Jiang W S. Axial crush of metallic honeycombs [J]. International Journal of Impact Engineering, 1997, 19(5-6) :439--456.
  • 4Zhao H, Gary G. Crushing behavior of aluminum hon- eycombs under impact loading [J]. International Jour- nal of Impact Engineering, 1998, 21(10) :827--836.
  • 5Hou B, Zhao H, Pattofatto S, et al. Inertia effects on the progressive crushing of aluminum honeycombs un- der impact loading[J]. International Journal of Solids and Structures, 2012, 49(19-20SI).2 754--2 762.
  • 6Zheng Z, Yu J, Li J. Dynamic crushing of 2D cellular structures: a finite element study[J]. International Journal of Impact Engineering, 2005, 32:650--664.
  • 7Hohe J, Becker W. Effective elastic properties of tri- angular grid structures [J]. Composite Structures, 1999, 45:131--145.
  • 8Hohe J, Beschorner C, Becker W. Effective elastic properties of hexagonal and quadrilateral grid struc tures [J]. Composite Structures, 1999, 46 . 73--89.
  • 9Ruan D, Lu G, Wang B, et al. In-plane dynamic crushing of honeycombs-a finite element study [J]. In- ternational Journal of Impact Engineering, 2003, 28 (2) :161--182.
  • 10Ruan D, Lu G. In-plane static and dynamic propertiesof aluminum honeycombs [J]. Australian Journal of Mechanical Engineering, 2006, 3:45--60.

二级参考文献9

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部