期刊文献+

Legendre算子矩阵求解分数阶微分方程 被引量:1

Legendre operator matrix for solving fractional differential equations
下载PDF
导出
摘要 本文考虑用勒让德(Legendre)算子矩阵求解分数阶微分方程的数值解。这种方法是取勒让德多项式的有限项,把勒让德多项式和算子矩阵结合起来,对给定的函数做了有效的离散,将分数阶微分方程转化为代数方程组,使得计算更简便,并给出数值算例验证了方法的有效性。 In this paper, Legendre operator matrix is applied to solve fractional order differential equations. This method is to take the limited items of the Legendre polynomial, which combined the Legendre polynomials with operator matrix. The given function is discretized effectively, the fractional order differential equation is transformed into algebraic equations and computation became convenient. The numerical example shows that the method is effective.
机构地区 燕山大学理学院
出处 《燕山大学学报》 CAS 2013年第5期466-470,共5页 Journal of Yanshan University
基金 河北省自然科学基金资助项目(A2012203047) 秦皇岛市科学技术研究与发展计划项目(201201B019 201302A023)
关键词 算子矩阵 分数阶微分方程 代数方程组 operational matrix differential equations of fractional order algebraic equations
  • 相关文献

参考文献12

  • 1Podlubny I. Fractional differential equations [J]. San Diego: Aca- demic Press, 1999.
  • 2章红梅,刘发旺.一类特殊形式的时间分数阶Navier-Stokes方程的解[J].工程数学学报,2008,25(5):935-938. 被引量:2
  • 3田丛丛,张梅,刘衍胜.一类分数阶微分方程边值问题解的存在性[J].科学技术与工程,2010,10(19):4737-4739. 被引量:5
  • 4张淑琴,兰德品.一类分数阶微分方程的本征值问题[J].西北师范大学学报(自然科学版),2006,42(3):5-8. 被引量:2
  • 5Wu J L. A wavelet operational method for solving fractional partial differential equations numerically [J]. Applied Mathematics and Computation, 2009,214 (1): 31-40.
  • 6Chen Yiming, Wu Yongbing, Cui Yuhuan, et al.. Wavelet method for a class of fractional convection-diffusion equation with vari- able coefficients [J]. Journal of Computational Science, 2010,1 (3): 146-149.
  • 7Saadatmandi A, Dehghan M. A new operational matrix for solvingfractional-order differential equations [J]. Computers and Mathe- matics with Applications, 2010,59 (3): 1326-1336.
  • 8Canuto C, Hussaini M Y, Quarteroni A, et al.. Spectral methods in fluid dynamic [M]. Englewood Cliffs: Prentice-Hall, 1988.
  • 9E1-Mesiry A E M, E1-Sayed A M A, EI-Saka H A A. Numerical methods for multi-term fractional (arbitrary) orders differential equations [J]. Applied Mathematics and Computation, 2005,160 (3): 683-699.
  • 10Ford N J, Connolly J A. Systems-based decomposition schemesfor the approximate solution of multi-term fractional differential equations [J]. Journal of Computational and Applied Mathematics, 2009,229 (2): 382-391.

二级参考文献19

  • 1张淑琴.有限区间上的分数阶扩散波方程的解[J].西北师范大学学报(自然科学版),2005,41(2):10-13. 被引量:6
  • 2张淑琴.一类分数阶微分方程的本征值问题[J].兰州大学学报(自然科学版),2005,41(3):98-101. 被引量:3
  • 3PODLUBNY I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.
  • 4SAMKO S G, KILBAS A A, MARICHEV O I.Fractional Integral and Derivatives ( Theorey and Applications)[M]. New York: Gordon and Breach,1993.
  • 5MOUSTAFA L O. On the Cauehy problem for some fractional order partial differential equations [J].Chaos, Solitons, Fractals, 2003, 18: 135-140.
  • 6KOCHUBEI A N. A Cauchy problem for evolution equations of fractional order [J], Differential Equations, 1989, 25.. 967-974.
  • 7PSHU A V. Solutions of a boundary value problem for a fractional partial differential equation [J ].Differential Equations, 2003, 39(8) : 1150-1158.
  • 8ORSINGHER E, REGHIN L. Time- fractional telegraph equations and telegraph processes with Brownian time [J]. Probab Theory Relat Fields,2004, 128: 141-160.
  • 9Bunde A, Havlin S, Roman H E. Multifractal features of random walks on random fractals[J]. Physcial Review A, 1990, 42(10): 6274-6277.
  • 10Podlubny I. Fractional Differential Equations[M]. California: Academic Press, 1999.

共引文献4

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部