摘要
设R是环,n是非负整数,Fn是所有FP-Gorenstein余挠维数不超n的左R-模类构成的集合.介绍了Fn的一些性质,当R是凝聚环时,证明了(Fn,F⊥n)是完全的余挠理论,因此每个模有一个满的Fn-覆盖和单的F⊥n-包络;进一步证明了每个左R-模有Fn-预包络.
Let R be a ring , n is a fixed nonnegative integer and Fn is the class of all left R-modules of FP-Gorenstein cotorsion dimensions at most n . Some properties of Fn are introduced , and it is proved that (Fn ,F⊥n ) is a perfect cotorsion theory , so every module have a epic Fn-cover and monic F⊥n-envelope . It is also proved that every left R-modules over left coherent ring have Fn-preenvelope .
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2013年第6期21-25,共5页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(10961021)