期刊文献+

相对FP-Gorenstein余挠模

Relative FP-Gorenstein cotorsion modules
下载PDF
导出
摘要 设R是环,n是非负整数,Fn是所有FP-Gorenstein余挠维数不超n的左R-模类构成的集合.介绍了Fn的一些性质,当R是凝聚环时,证明了(Fn,F⊥n)是完全的余挠理论,因此每个模有一个满的Fn-覆盖和单的F⊥n-包络;进一步证明了每个左R-模有Fn-预包络. Let R be a ring , n is a fixed nonnegative integer and Fn is the class of all left R-modules of FP-Gorenstein cotorsion dimensions at most n . Some properties of Fn are introduced , and it is proved that (Fn ,F⊥n ) is a perfect cotorsion theory , so every module have a epic Fn-cover and monic F⊥n-envelope . It is also proved that every left R-modules over left coherent ring have Fn-preenvelope .
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2013年第6期21-25,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10961021)
关键词 凝聚环 FP—Gorenstein余挠维数 覆盖 包络 coherent ring FP-Gorenstein cotorsion dimension covers envelopes
  • 相关文献

参考文献12

  • 1XU J. Flat Cover of Modules [M] New York, Berlin: Springer-Verlag, 1996.
  • 2ENOCHS E E, JENDA O M G. Relative Homological Algebra [ M]. Berlin: Walter de Gruyter, 2000.
  • 3LEI Rui-ping. FP-Gorenstein cotorsion modules[J]. 2012 to appear.
  • 4ENOCHS E E, LOPEZ-RAMOS J A. Gorenstein Flat Module [ M ]. New York~ Nova Science Publishers, 2001.
  • 5ENOCHS E E. Injective and flat cover, envelopes and resolvents [J]. Israel J Math, 1981, 39: 189-209.
  • 6TRLIFAJ J. Covers, envelopes and eotorsion theories [R-]. Lecture Notes for the Workshop. Homological Methods in Module Theory. Cortona: September 2000: 10-16.
  • 7ENOCHS E E, JENDA O M G, TORRECILLAS B, et al. Torsion theory with respect to Ext[R]. Research Report 98-11, May, Department of Mathematics, University of Kentucky, 1998.
  • 8STENSTR M B. Coherent rings and FP-injeetive modules[J]. J London Math Soc, 1970, 2 (2): 323-329.
  • 9BENNIS D, MAHDOU N. Strongly Gorenstein progective, injective, and flat modules [J]. J Pure ApplAlgebra, 2007, 210: 437-445.
  • 10CHRISTENSEN L W A, FRANKILD H H. On Gorenstein projective, injective, and flat dimensions- a functorial description with applications [J]. J Algebra, 2006, 302: 231-279.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部