期刊文献+

改进余弦微分求积法数值求解RLW方程 被引量:1

Improved cosine expansion-based differential quadrature method and its application in solving the RLW equation
下载PDF
导出
摘要 采用将节点分为单双号的方法对余弦微分求积法(CDQM)进行了改进,并用改进后的算法构造了求解对流方程与RLW方程的数值格式,求得了4个算例的数值解.通过与原余弦微分求积法所得数值解的比较,表明改进后的算法精确度更高. In this paper , an improved cosine expansion-based differential quadrature method (CDQM ) is presented by using odd number nodal points and even number nodal points , then a numerical scheme for solving diffusion-convection equation and RLW equation is established by the improved method . As an example , the numerical solutions of four examples are obtained . It is shown that the numerical results of the improved algorithm have higher accuracy as compared with the original CDQM .
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2013年第6期35-40,共6页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10875098) 西北师范大学科技创新工程基金资助项目(NWNU-KJCXGC-0348)
关键词 改进余弦微分求积法 对流方程 RLW方程 数值解 improved cosine expansion-based differential quadrature method diffusion-convection equation RLW equation numerical solutions
  • 相关文献

参考文献8

  • 1BELLMAN R E, CASTI J. Differential quadrature and long term integration [ J]. Journal of Mathematical Analysis and Application, 1971, 34: 235-238.
  • 2SAKA B. Cosine expansion-based differential quadrature method for numerical solution of the KdV equation [J]. Chaos, Solitons and Fractals, 2009, 40.. 2181-2190.
  • 3PEREGRINE D H. Calculations of the development of an undular bore [J]. Journal of Fluid Mechanics, 1966, 25: 321-330.
  • 4BONA J L, PRITCHARD W G, SCOTT L R. Numerical schemes for a model of nonlinear dispersive waves [ J ]. Computer Physics Communications, 1985, 60: 167-196.
  • 5DOGAN A. Numerical solution of RLW equation using linear finite elements within Galerkin's method [J]. Applied Mathematical Modelling, 2002, 26: 771-783.
  • 6孙建安,陈继宇,刘万海,豆福全,张涛锋,石玉仁.用调和微分求积法数值求解Burgers方程[J].西北师范大学学报(自然科学版),2009,45(5):34-38. 被引量:5
  • 7孙建安,陶娜,张涛锋,颜鹏程.用余弦微分求积法数值求解RLW方程[J].西北师范大学学报(自然科学版),2011,47(5):30-34. 被引量:2
  • 8林东,詹杰民.浅水方程组合型超紧致差分格式[J].计算力学学报,2008,25(6):791-796. 被引量:9

二级参考文献47

  • 1LELE S K. Compact finite difference schemes with spectral-like resolution[J]. J Comput Phys, 1992, 103 : 16-42.
  • 2CARPENTER H, GOTFLIEB D, ABARBANEL S. The stability of numerical boundary treatment for compact high-order finite-difference schemes [J]. J Comput Phys, 1993,108 : 272-295.
  • 3CARPENTER H, GOTFLIEB D, ABARBANE i. Time-stable boundary condition for finite difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes[J]. J Comput Phys, 1994,111:220-236.
  • 4KRISHNAM Mahesh. A family of high order finite difference schemes with good spectral resolution[J]. J Comput Phys, 1998,145 : 332-358.
  • 5PETER C Chu, Chenwu Fan. A three point combined compact difference scheme [J]. J Comput Phys, 1998,140 : 370-399.
  • 6PETER C. Chu, Chenwu Fan. A three point sixth-order staggered combined compact difference scheme [J]. Mathematical and Computer Modeling, 2000, 32:323-340.
  • 7Peter Chu, Chenwu Fan. A three-point sixth order nonuniform combined compact difference scheme[J]. J Comput Phys, 1999,148 : 663-674.
  • 8FU D X, MAY W. A high order accuracy difference scheme[J]. J Comput Phys, 1997,134:1-15.
  • 9MAY W, FU D X. Super compact finite difference methods with uniform and nonuniform grid system [A]. Proceedings of 6^th International Symposium on Computational Fluid Dynamics[C]. Lake Tahoe,Nevada, 1995.
  • 10Glaudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A. Zang, Spectral Methods in Fluid Dynamics[M]. Beijing: Springer-Verlag, 1988.

共引文献11

同被引文献18

  • 1LELE S K. Compact finite difference schemes with spectral-like resolution [ J ]. Journal of Computational Physics, 1992, 103: 16-42.
  • 2CHU P C, FAN C W. A three-point combined compact difference scheme [ J ]. Journal of Computational Physics, 1998, 140: 370-399.
  • 3GAMET L, DUCROS F, NICOUD F, et al. Compact fimte difference schemes on non-uniform meshes: Application to direct numerical simulations of compressible flows [ J ]. Int J Numer Meth Fluids, 1999, 29: 159-191.
  • 4ZHANG Pei-guang, WANG Jian-ping. A predictor- corrector compact finite difference scheme for Burgers' equation[J]. Appl Math Comput, 2012, 219.. 892-898.
  • 5COLE J D. On a quasi-linear parabolic equation occurring in aerodynamics[J]. Appl Math Comput, 2005, 170: 859-904.
  • 6HOPF E. The partial Comm Pure App Math, differential equation [ J ] 1950, 3: 201-230.
  • 7DOGAN A. Numerical solution of RLW equation using linear finite elements within Galerkin's method [J]. Appl Math Model, 2002, 26: 771-783.
  • 8田芳,田振夫.二维对流扩散方程非均匀网格上的高阶紧致差分方法[J].水动力学研究与进展(A辑),2008,23(5):475-483. 被引量:11
  • 9林东,詹杰民.浅水方程组合型超紧致差分格式[J].计算力学学报,2008,25(6):791-796. 被引量:9
  • 10田芳,田振夫.定常对流扩散反应方程非均匀网格上高精度紧致差分格式[J].工程数学学报,2009,26(2):219-225. 被引量:15

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部