摘要
针对一维常系数对流扩散模型方程,讨论了当含有Neumann边界条件时,局部间断有限元(LDG)方法的收敛性.证明了当边界条件为Neumann边界条件时,LDG方法为收敛的,且收敛阶可达到hk.
The convergence of the local discontinuous Galerkin finite element method for convection-diffusion prob- lems with Neumann boundary condition is discussed. The LDG method with Neumann boundary condition is proved to be convergence in the energy norm of the error at a rate of hk.
出处
《江苏师范大学学报(自然科学版)》
CAS
2013年第3期4-7,共4页
Journal of Jiangsu Normal University:Natural Science Edition
基金
榆林学院高层次人才科研启动基金资助项目(09GK12)