期刊文献+

含Neumann边界条件的局部间断有限元方法的收敛性分析 被引量:1

The convergence of LDG method with Neumann boundary condition
下载PDF
导出
摘要 针对一维常系数对流扩散模型方程,讨论了当含有Neumann边界条件时,局部间断有限元(LDG)方法的收敛性.证明了当边界条件为Neumann边界条件时,LDG方法为收敛的,且收敛阶可达到hk. The convergence of the local discontinuous Galerkin finite element method for convection-diffusion prob- lems with Neumann boundary condition is discussed. The LDG method with Neumann boundary condition is proved to be convergence in the energy norm of the error at a rate of hk.
作者 郑亚敏
机构地区 榆林学院数学系
出处 《江苏师范大学学报(自然科学版)》 CAS 2013年第3期4-7,共4页 Journal of Jiangsu Normal University:Natural Science Edition
基金 榆林学院高层次人才科研启动基金资助项目(09GK12)
关键词 局部间断有限元(LDG)方法 NEUMANN边界条件 收敛性 local discontinuous Galerkin finite element (LDG) method Neumann boundary condition convergence
  • 相关文献

参考文献8

二级参考文献15

  • 1Ziqing Xie,Zhimin Zhang.SUPERCONVERGENCE OF DG METHOD FOR ONE-DIMENSIONAL SINGULARLY PERTURBED PROBLEMS[J].Journal of Computational Mathematics,2007,25(2):185-200. 被引量:18
  • 2D.N.Arnold,F.Breezi,B.Cockburn,L.D.Marini,Unified analysis of discontinuous Galerkin methods for elliptic problems[J].SIAM J.Numer.Anal.,2002,39:1749-1779.
  • 3D.N.Arnold,An interior penalty finite element method with discontinuous element[J].SIAM J.Numer.Anal.,1982,19:742-760.
  • 4I.Babuska,C.E.Baumann,J.T.Oden.Adiscontinuous hp finite element method for diffusion problems:1-D analysis[J].Comput.Math.Appl.,1999,37:103-122.
  • 5Houston,P.,Schwab,C.,Suli,E..Discontinuous hpFinite Element Methods for Advection-Diffusion-Reaction Problems[J].SIAM J.Numer.Anal.,2002,39:2133-2163.
  • 6Sudirham J J, van der Vegt J J W, van Damme R M J. Space-time discontinuous Galerkin method for advection-diffusion problems on time-dependent domains[J]. Appl Numer Math, 2006, 56: 1491-1518.
  • 7Arnold D N, Brezzi F, Cockburn B, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM J Numer Anal, 2002, 39(5): 1749-1779.
  • 8Brezzi F, Manzini G, Marini D, et al. Discontinuous Galerkin approximations for elliptic problems[J]. Numer Methods Partial Differ Eqs, 2000, 16: 365-378.
  • 9Brezzi F, Marini L D, Sfili E. Discontinuous Galerkin methods for first-order hyperbolic problems[J]. Math Models Methods Appl Sci, 2004, 14(12): 1893-1903.
  • 10Adjerid S,Klauser A. Superconvergence of discontinuous finite ele- ment solutions of transient convection -diffusion problems[J].Jour- nal of Scientific Computing,2005,(1 - 3):5-24.

共引文献5

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部