期刊文献+

(H_2O)_5环状异构体的氢键协同作用和相互作用能的多体效应 被引量:1

Cooperativity of hydrogen bonds and the contribution of many-body terms to the interaction energy in( H_2O)_5 ring water pentamers
下载PDF
导出
摘要 在量子化学计算的基础上,采用一种简便的能量分解方案,讨论了(H2O)5四种环状异构体的稳定性、氢键协同作用、多体效应与水分子排布方式之间的关系。结果表明,虽然总相互作用能主要来自二体作用项的贡献,但异构体之间的稳定性的差异主要由三体作用项决定;环形结构中,以da-da-da方式形成的三联体,其三体作用会增加总的相互作用,从而增强环结构的稳定性;将此推广到六元环中,发现亦存在这种关系,因此da-da-da三联体的数目可作为环稳定性的直观判据。 Based on quantum chemistry calculations, this paper discusses the relationships between molecular ar- rangements, hydrogen bond cooperativity, many-body effects and the relative stability of (HE0)5 ring isomers after carrying out energy decomposition in a simple scheme. The results show that the total interaction energy mainly comes from two-body interactions, but three-body interactions may also make a major contribution to the relative stabilities of the isomers. When there is a donor-acceptor (da) triplet of the type da-da-da the ring can be stabi- lized by such three-body interactions. The relationship between the relative stability and number of da-da-da triplets can be confirmed in isomers of hexamers, and may be regarded as an intuitive way to evaluate the relative stabilities of ring water clusters.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期23-29,共7页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(21103007)
关键词 五元环水合簇 异构体稳定性 分子取向 能量分解 多体相互作用 氢键协同性 ring water pentamer isomer stability molecular arrangement energy decomposition many-bodyeffects hydrogen bond cooperativity
  • 相关文献

参考文献32

  • 1Kennedy D, Norman C. What donl we know? [ J]. Sci- ence, 2005, 309: 75.
  • 2Eisenberg D, Kauzmann W. The Structure and Properties of Water [ M ]. Oxford, UK: Oxford University Press, 1969.
  • 3Xantheas S S. Cooperativity and hydrogen bonding net- work in water clusters[ J ]. Chem Phys, 2000,258:225- 231.
  • 4Znamenskiy V S, Green M E J. Quantum Calculations on Hydrogen Bonds in Certain Water Clusters Show Coopera- tive Effects [ J ]. Chem Theory Comput, 2007, 3 : 103 - 114.
  • 5Yoo S, Apra E, Zeng X C, et M. High-Level Ab lnitio Electronic Structure Calculations of Water Clusters (H20)16 and (H2O)16: A New Global Minimum for (H20) j6 [ J]. J Phys Chem Lett,2010( 1 ) : 3122-3127.
  • 6Shields R M, Berhane T, Archer K A, et al. Accurate Predictions of Water Cluster Formation, (H=O)16217O [J]. JPhysChemA, 2010, 114:11725-11737.
  • 7Bulusu S, Yoo S, Apra E, et al. Lowest-Energy Struc- tures of Water Clusters (H20)lland (H20)13[J]. J Phys Chem A, 2006, 110:11781-11784.
  • 8Temelso B, Archer K A, Shields G C. Benchmark Struc- tures and Binding Energies of Small Water Clusters with Anharmonicity Corrections [ J ]. J Phys Chem A, 2011, 115 : 12034-12046.
  • 9Mizuse K, Mikami N, Fujii A. Infrared Spectra and Hy- drogen Bonded Network Structures of Large Protonated Water Clusters H^ + ( H2 O )n ( n = 20 - 200) [ J ]. Ange- wandte Chemie International Edition, 2010, 49:10119- 10122.
  • 10Miyazaki M, Fujii A, Ebata T, et al. Infrared Spectro- scopic Evidence for Protonated Water Clusters Forming Nanoscale Cages [ J ]. Science, 2004, 304 : 1134-1137.

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部