期刊文献+

Apriori算法实现基于关联规则的交通路段流量挖掘 被引量:1

Mining of Road Traffic Flows Based on Association Rules by Using Apriori Algorithm
下载PDF
导出
摘要 时空数据挖掘技术是城市交通出行决策系统的一个重要的数据处理环节,其分析结果也是路网疏导和出行策略的重要决定因素.对著名的Apriori算法加以完善和应用,已成为城市交通出行决策系统中时空数据挖掘的研究热点.以某城市的路段流量为例,利用Apriori算法对路段流量间的时空关联规则进行挖掘.测试结果与实际数据对比,预测结果精度较高. Temporal-spatial data mining technology is an important aspect of data processing in the urban traffic decision system,and its analysis result is a key factor to make decision of road network diverting and travel strategy. Improvement and application of the famous Apriori algorithm has become a research hotspot in temporal-spatial data mining for the urban traffic decision system. Taking some roads' traffic flows of a real city as an example, mining of the traffic flow data in temporal-spatial association rules based on the Apriori algorithm was conducted. Comparing the prospected results with the real data,the former has a higher precision.
作者 潘晓敏
出处 《上海工程技术大学学报》 CAS 2013年第3期283-288,共6页 Journal of Shanghai University of Engineering Science
关键词 时空数据挖掘 智能交通 APRIORI算法 temporal-spatial data mining intelligent transportion Apriori algorithm
  • 相关文献

参考文献6

二级参考文献165

  • 1郑丽英.基于trie的关联规则发现算法[J].兰州理工大学学报,2004,30(5):90-92. 被引量:3
  • 2徐章艳,刘美玲,张师超,卢景丽,区玉明.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. 被引量:71
  • 3曾万聃,周绪波,戴勃,常桂然,李春平.关联规则挖掘的矩阵算法[J].计算机工程,2006,32(2):45-47. 被引量:33
  • 4张炜,李建中,刘禹.一种基于概率模型的预测性时空区域查询处理[J].软件学报,2007,18(2):279-290. 被引量:2
  • 5AGRWAL R, SRIKAN R. Fast algorithms for mining association rules in large databases [ C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1994:487 - 499.
  • 6PARK J S, CHEN M S, YU P S. An effective Hash based algorithm for mining association rules [ C]//Proceedings of International Conference on the Special Interest Group on Management of Data. New York: ACM, 1995:175 - 186.
  • 7HAN J, FU Y. Discovery of multiple-level association rules from large databases [ C]//Proceedings of the 20th International Conference on Very Large Database. Zuich, Switzerland: [ s. n. ], 1995: 420 - 431.
  • 8SAVASERE A, OMIECINSKI E, NAVATHE S. An efficient algorithm for mining association rules in large databases [ C]// Proceedings of the 21st International Conference on Very Large Database. New York: ACM, 1995:432-443.
  • 9TOLVONEN H . Sampling large databases for association rules [C]// Proceedings of the 22nd International Conference on Very Large Database. Bombay, India [ s. n. ], 1996:134 - 145.
  • 10BRIN S. Dynamic itemset counting and implication rules for market basket analysis [ C l// Proceedings of International Conference on the Special Interest Group on Management of Data. New York ACM, 1997:255-264.

共引文献414

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部