期刊文献+

基于SVM的BoVW距离度量学习 被引量:1

SVM Based BoVW Distance Metric Learning
下载PDF
导出
摘要 在视觉单词包模型(bag of visual words,BoVW)模型中,由于特征检测的不足、聚类算法的缺陷及视觉单词的量化误差,用BoVW模型产生的视觉词典中,存在视觉单词同义性和歧义性的问题,因此用BoVW计算图像距离时,效果不太理想。BoVW模型产生的词典规模巨大,学习一个普通矩阵需要的运算量难以接受。针对BoVW模型上述缺陷,文章提出了一种基于SVM的BoVW距离度量学习方法。该方法利用SVM训练一个将相似图像对与非相似图像对最大程度分离的超平面,得到计算词频直方图点积的权重矩阵。在Oxford图像集上的检索实验表明了该方法的有效性。 Due to the imperfect feature detection, cluster algorithm drawback, and quantization error existing in bag of visual words (BoVW) , the visual vocabulary produced by BoVW has the visual word synonymy and polysemy problem, therefore it is not satisfactory to measure image distance u- sing BoVW. Aiming at the above-mentioned BoVW defects, this paper presents an SVM based BoVW distance metric learning. This approach uses SVM to train a hyperplane which ean separate similar image pairs and dissimilar image pairs to a large degree, and get a weight for each dimension used to compute the visual words histogram point product. Experiments on Oxford image datasets demonstrate that the approach is effective.
机构地区 信息工程大学
出处 《信息工程大学学报》 2013年第5期585-590,633,共7页 Journal of Information Engineering University
基金 科研基金资助项目
关键词 距离度量学习 图像检索 支持向量机 视觉单词 distance metric learning image retrieval SVM bag of visual words
  • 相关文献

参考文献15

  • 1Sivic J, Zisserman A. Video google: A text retrieval approach to object matching in videos[ C ]//IEEE International Conference on Computer Vision. 2003 : 1470-1477.
  • 2Xing E P, Ng A Y, Jordan M I, et al. Distance Metric Learning with Application to Clustering with Side-information[J]. Ad- vances in Neural Information Processing Systems, 2002, 15:505-512.
  • 3Goldberger J, Roweis S, Hinton G, et al. Neighbourhood components analysis[ C ]//Advances in Neural Information Process- ing Systems. 2004 : 13-18.
  • 4Davis J V Jason, Kulis B, Jain P, et al. Information-theoretic metric learning[ C ]// Proceedings of the International Confer- ence on Machine Learning. 2007: 209-216.
  • 5Weinberger K Q, Blitzer J, Saul L K. Distance metric learning for large margin nearest neighbor classification[ J]. Journal of Machine Learning Research, 2009, (10): 207-244.
  • 6Jegou H, Douze M, Schmid C. On the burstiness of visual elements[ C ]//Proceedings of the IEEE Computer Society Confer- ence on Computer Vision and Pattern Recognition. 2009: 1169-1176.
  • 7Chum O, Matas J. Unsupervised discovery of co-occurrence in sparse high dimensional data[C]//IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition. 2010: 3416-3423.
  • 8Mikulik A, Perdoch M, Chum O, et al. Learning a fine vocabulary[ C ]//llth European Conference on Computer Vision. 2010 : 1-14.
  • 9Turcot P, Lowe D, Lowe D G. Better matching with fewer features : The selection of useful features in large database recogni- tion problems[ C ]//IEEE International Conference on Computer Vision. 2009: 2109-2116.
  • 10Cao S, Snavely N. Learning to Match Images in Large-Scale Collections[ C ]//The European Conference on Computer Vision. 2012 : 259-270.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部