期刊文献+

粉煤灰对磷酸钾镁水泥性能的影响 被引量:10

Effect of fly ash on properties of magnesium potassium phosphate cement paste
下载PDF
导出
摘要 测试了不同粉煤灰掺量和酸碱组份比例的磷酸钾镁水泥(MKPC)浆体的抗压强度、水养护剩余强度和初始水化温度,分析了MKPC硬化体的物相组成和显微结构.结果表明:由于复合缓凝剂有效延缓了MKPC浆体的早期水化反应速度,MKPC最佳酸碱组份比例较掺硼酸盐的MKPC降低50%以上;掺适量的粉煤灰(FA)可使MKPC的水稳定性明显提高,其中酸碱组份质量比为1.0∶3.0、m(FA)/m(FA+MgO)=20%的MKPC硬化体,在水养护条件下的剩余抗压强度率超过90%.酸碱组份质量比的降低可减少MKPC硬化体中磷酸盐的溶解和水化产物的水解,FA对MKPC浆体的物理、化学作用使MKPC硬化体的结构更加致密,从而使硬化体早期水稳定性明显提高. Magnesium potassium phosphate cement (MKPC) pastes with different contents of fly ash (FA) and ratio of acid to base were discussed through testing compressive strength,residual ratio of compressive strength after water curing and hydration temperature rise.The micro morphology and the phase composition of hardened MKPC pastes were also analyzed.The results indicate that compared to the MKPC paste with borate retarders,the optimum proportion of acid component is decreased above 50% because of the effective delaying effect of composite retarder on the early hydration rate of MKPC paste.Some fly ash can obviously improve the water stability of hardened MKPC paste.The residual ratio of compressive strength of hardened MKPC paste with mass ratio of acid to base of 1.0 ∶ 3.0 and 20% ash fly in water curing condition is over 90%.The dissolution of phosphate and hydrolysis in hydrates can be alleviated by the decrease of acid component content in MKPC.The micro structure of hardened MKPC paste is compacted by the physical and chemical effects of FA to improve the water stability.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期730-735,共6页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(51278230) 建设部科研开发项目(2010-K4-38,2011-K4-23)
关键词 磷酸钾镁水泥 粉煤灰 水化温度 抗压强度 水稳定性 MKPC fly ash hydration temperature compressive strength water stability
  • 相关文献

参考文献4

二级参考文献57

  • 1荀勇,孙伟,Reinhardt H.W.,Krueger M..短纤维和织物增强混凝土薄板试验研究[J].土木工程学报,2005,38(11):58-63. 被引量:37
  • 2丁铸,李宗津.早强磷硅酸盐水泥的制备和性能[J].材料研究学报,2006,20(2):141-147. 被引量:61
  • 3汪宏涛,钱觉时,曹巨辉,沈兵.钢纤维增强磷酸镁水泥砂浆的性能与应用[J].建筑技术,2006,37(6):462-464. 被引量:31
  • 4SUGAMA T, KUKACKA L E. Magnesium monophosphate cement derived from diammonium phosphate solutions[J]. Cement and Concrete Research, 1983,13(3) :407-416.
  • 5SOUDEE E. Mechanism of setting reaction in magnesia-phosphate cements[J]. Cement and Concrete Research, 2000, 30 (2) :315-321.
  • 6YANG Q,WU X. Factors influencing properties of phosphate cement-based binder for rapid repair of concrete[J]. Cement and Concrete Research,1999,29(3) :389-396.
  • 7JIANG Hong-yi, ZHANG Lian-meng. Investigation of phosphate cement-based hinder with super high early strength for repair of concrete[J]. Journal of Wuhan University of Technology, 2001,16(3) :46-48.
  • 8HALL D A,STEVENS R. The effect of retarders on the microstructure and mechanical properties of magnesia-phosphate cement mortar[J]. Cement and Concrete Research, 2001,31 (3) :455-465.
  • 9DING Zhu,LI Zong-jin. Effect of aggregates and water contents on the properties of magnesium phospho-silicate cement[J]. Cement and Concrete Composite, 2005,27 (1): 1 1-18.
  • 10WAGH A,JEONG S Y, SINGH D. High strength phosphate cement using industrial byproduct ashes[A]. Proceedings of First International Conference[C]. [sl]: American Society of Civil Engineers, 1997 : 542-553.

共引文献162

同被引文献144

引证文献10

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部