期刊文献+

计算Fiedler向量的一种高效准确方法 被引量:1

An Efficient and Accurate Scheme for Computing the Fiedler Vector
下载PDF
导出
摘要 图的Fielder向量在许多应用领域扮演着重要角色,包括矩阵重排、图的分割、蛋白质分析、数据挖掘、机器学习与网络搜索等.但一般认为,计算Fiedler向量是很耗时的,因为其牵涉到特征值问题.文中提出了计算Fiedler向量的一种新方法,该方法基于收缩技术与反幂法,将Fiedler向量的计算转化为缩减矩阵最小特征值对应特征向量的计算.其次,引入了一种预条件方案来进一步减少计算量,在该方案中,可以采用任何一种针对线性方程组求解的预条件技术.对从UF稀疏矩阵集下载下来的几个稀疏矩阵对应的图,对新方法进行了实验,并与已知的最新方法进行了比较.实验中,采用了对角预条件,且对算法利用MPI和OpenMP混合编程来实现并行计算.实验结果表明,新方法相对于已有方法,在计算效率与计算精度上都具有优势.对图二分的应用实验也表明,在大多数情况下,文中算法给出的结果更好. The Fiedler vector of a graph plays a vital role in many applications, including matrix reordering, graph partitioning, protein analysis, data mining, machine learning, and web search. But it is usually regarded as very expensive in that it involves the solution of an eigenvalue problem. In this paper, we provide a new scheme to compute the Fiedler vector, based both on the shrink method and on the inverse power method. The computation of the Fiedler vector is reduced to that of the eigenvector related to the minimum eigenvalue of the reduced matrix. Further, a preconditioning method is introduced to reduce the computation cost. Any kind of known precon- ditioning technique for the solution of linear systems can be used in this method. For the graphs related to some of the sparse matrices downloaded from the UF Sparse Matrix Collection, the experiments are compared to the known novel schemes. In the experiments, diagonal scaling is used as the preconditioner and the algorithm is implemented with hybrid programming of MPI and OpenMP for parallel computing. The results show that the new scheme has the advantage both in efficiency and in accuracy. The application to graph bisection also shows that the equality is better than those with the known novel methods in most cases.
出处 《计算机学报》 EI CSCD 北大核心 2013年第11期2266-2273,共8页 Chinese Journal of Computers
基金 国家自然科学基金(60803039) 国家"九七三"重点基础研究发展规划项目基金(2009CB723803) 水利部公益性行业科研专项(201201053)资助~~
关键词 Fiedler向量 特征值问题 并行计算 稀疏线性方程组 共轭斜量法 预条件 Fiedler vector eigenvalue problem parallel computing sparse linear system conjugategradient iteration preconditioner
  • 相关文献

参考文献14

  • 1Barnard S T, Pothen A, Simon H. A spectral algorithm for envelope reduction of sparse matrices. Numerical Linear Algebra with Applications, 1995, 2(4): 317-334.
  • 2Pothen A, Simon H D, Liou Kan-Pu. Partitioning sparse matrices with eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications, 1990, 11(3): 430-452.
  • 3Qiu Huaijun, Hancock E R. Graph matching and clustering using spectral partitions. Pattern Recognition, 2006, 39 (1) : 22-34.
  • 4Kundu S, Sorensen D C, Philiphsi G N Jr. Automatic domain decomposition of proteins by a Gaussian network model. Proteins: Structure, Function, and Bioinformatics, 2004, 57(4) : 725-733.
  • 5Higham D J, Kalna G, Kibble M. Spectral clustering and its use in bioinformatics. Journal of Computational and Applied Mathematics, 2007, 204(1): 25:37.
  • 6Shepherd S J, Beggs C B, Jones S. Amino acid partitioning using a Fiedler vector model. European Biophysics Journal, 2007, 37(1): 105-109.
  • 7Ng A Y, Jordan M I, Weiss Y. On spectral clustering: Analysis and an algorithm//Dierttrich T G, Becket S, Ghahramani Z eds. Advances in Neural Information Processing Systems. Massachusetts: MIT Press, 2001:849-856.
  • 8He Xiaofeng, Zha Hongyuan, Ding Chris H Q, Simon Horst D. Web document clustering using hyperlink structures. Com- putational Statistics & Data Analysis, 2002, 41(1): 19-45.
  • 9Hu Y F, Scott J A. HSL MC73: A fast multilevel Fiedler and profile reduction code. Illinois Wolfram Research Inc: Technical Report RAL-TR-2003-036, 2003.
  • 10Sameh A, Tong Zhanye. The trace minimization method for the symmetric generalized eigenvalue problem. Journal of Computational and Applied Mathematics, 2000, 123 (1 2) : 155-175.

二级参考文献12

  • 1马怀发,陈厚群,黎保琨.混凝土细观力学研究进展及评述[J].中国水利水电科学研究院学报,2004,2(2):124-130. 被引量:83
  • 2马怀发,陈厚群,黎保琨.应变率效应对混凝土动弯拉强度的影响[J].水利学报,2005,36(1):69-76. 被引量:41
  • 3(DL/T5150-2001).水工混凝土试验规程[S].[S].,..
  • 4SCHLANGEN E, GARBOCAI E J. Fracture simulations of concrete using lattice models: computational aspects[J]. Engng Frac Mech, 1997,57 (2/3) : 319- 322.
  • 5SCHLANGEN E, VAN MIER J G M. Lattice model for numerical simulation of concrete fracture[A]. International conference on dam fracture[C]. Denver, Colorado, USA, 1991.
  • 6BAZANT Z P, TABBARA M R, KAZEMI M T, et al. Random particle models for fracture of aggregate or fiber composites[J]. ASCE J Engng Mech, 1990, 116(8):1686-1705.
  • 7SAAD Y. ILUT: A dual threshold incomplete ILU preconditioner[J]. Numer Lin Alg Appl , 1994,1 (4) : 387-402.
  • 8SAAD Y. Iterative Methods for Sparse Linear Systems[M]. Boston: PWS Pub Co, 199G.
  • 9Monga Made M. M., VanderVorst H. A.. Ageneralized domain decomposition paradigm for parallel incomplete LU factorization preconditionings[J]. Future Generation Computer Systems, 2001, 17: 925- 932.
  • 10WU J P,LI X M. Local Block Factorization and its Parallelization to Block Tridiagonal Matrices [M]. ICA3PP, Beijing: Algorithms and Architectures for Parallel Processing,China, October,2002.

共引文献5

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部