期刊文献+

模糊命题的多维三层逻辑的语义 被引量:1

Semantics of Fuzzy Propositional Multi-Dimension Three-Layer Logic
下载PDF
导出
摘要 考虑模糊概念与模糊逻辑的多种性,基于带对偶非的三角模逻辑,提出了一种新的模糊命题的逻辑,称为模糊命题的多维三层逻辑.特别地,记n维三层逻辑为L_(n-3-3).首先,引入了模糊命题的首层n维真向量、中层3维真向量、末层经典真向量的概念;然后,提出了L_(n-3-3)逻辑悲观c-重言式、L_(n-3-3)逻辑乐观c-重言式、L_(n-3-3)逻辑期望c-重言式、L_(n-3-3)逻辑重言式、L_(n-3-3)逻辑悲观c-经典重言式、L_(n-3-3)逻辑乐观c-经典重言式与L_(n-3-3)逻辑期望c-经典重言式概念,并且讨论了L_(n-3-3)逻辑的性质.最后提供了LN-L2-3-3逻辑的规律. Considering multiple characteristics of fuzzy concept and fuzzy logics,based on trian-gle norms with involution negation,the paper proposes a new kind of fuzzy propositional logics.It is called fuzzy propositional multi-dimension three-layer logic.In particular,n-dimension three-layer logic is denoted by L_(n-3-3).Firstly,some concepts for fuzzy propositions,such as the first-layer n-dimension truth-vector,the middle-layer 3-dimension truth-vector and the end-layer classical truth-vector,are introduced.Then,some concepts,such as L_(n-3-3) logic pessimism c-Tautology,L_(n-3-3) logic optimism c-Tautology,L_(n-3-3) logic expectation c-Tautology,L_(n-3-3) logic Tautology,L_(n-3-3) logic pessimism c-classical Tautology,L_(n-3-3) logic optimism c-classical Tautology and Ln-33 logic expectation c-classical Tautology also are presented,and the proper-ties of L_(n-3-3) logic are discussed.Finally,the logical laws of LN-L2-3-3 are provided.
作者 张兴芳 孟广武 ZHANG Xing-Fang;MENG Guang-Wu(School of Mathematical Sciences,Liaocheng University,Liaocheng,Shandong 252059)
出处 《计算机学报》 EI CSCD 北大核心 2013年第11期2283-2289,共7页 Chinese Journal of Computers
基金 国家自然科学基金(61273044)资助
关键词 模糊逻辑 多维三层逻辑 首层n维真向量 中层3维真向量 末层经典真向量 fuzzy logic multi-dimension three-layer logic the first-layer n-dimension truth-vectorsthe middle-layer 3-dimension truth-vector the end-layer classical truth-vector
  • 相关文献

参考文献31

  • 1Lukasiewicz J, Tarski A. Untersuchungen uber den aussa genkalkul. Comptes Rendus des Seances de la Sociele des Lettres des Varsovie, Classe Ⅲ, 1930, 23: 30-50.
  • 2Nilsson N. Probability logic. Artificial Intelligence, 1986, 28(3) : 71-78.
  • 3Hailperin T. Sentential Probability Logic. London: Associated University Press, 1996.
  • 4Campos C, Cozman F, Luna J. Assembling a consistent set of sentences in relational probabilistic logic with stochastic independence. Journal of Applied Logic, 2009, 7(10) : 137- 154.
  • 5Hailperin T. Probability logic. Notre Dame Journal of Formal Logic, 1984, 25(1): 198-212.
  • 6Dubois D, Prade H. Necessity measure and the resolution principle. IEEE Transactions on Systems, Man, and Cybernetics, 1987, 17(3): 474-478.
  • 7Doubois D, Prade H. Possibility theory, probability theory and multiple valued logics~ A clarification. Annals of Mathe- matics and Artificial Intelligence, 2001, 32(1-4): 35-66.
  • 8Zadeh L. Fuzzy sets. Information and Control, 1965, 8(3): 338-353.
  • 9Zadeh L. Fuzzy logic and approximate reasoning. Synthese, 1975, 30(3-4) : 407-428.
  • 10Godel K. Zum intuitionistischen aussagenkalkul. Anzeiger Akademie der Wissenschaften in Wien, 1932, 69:65-66.

二级参考文献2

共引文献193

同被引文献30

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部