期刊文献+

基于多尺度字典的红外与微光图像融合 被引量:9

Infrared and Low Light Level Image Fusion Based on Multi-scale Dictionary
下载PDF
导出
摘要 基于人类视觉系统及信号的过完备稀疏表示理论,提出了一种基于多尺度字典的红外与微光图像融合方法。首先把输入的红外与微光图像按照高斯金字塔模型分解,用DCT字典作为初始字典按照四叉树的结构进行分解,对于各尺度的字典按照K-SVD算法独立训练更新,构造出多尺度学习字典。其次在该字典下利用改进的OMP算法得到输入源图像各自的稀疏系数,然后按照最优化融合图像与输入源图像的欧氏距离、融合图像方差的准则,建立一个融合图像稀疏系数的最优化函数,最后通过求解该函数的l1范数得到融合图像。实验结果表明:该算法的融合效果优于小波变换法、Laplacian塔型方法以及PCA方法等传统融合方法。 A novel infrared and low light level image fusion algorithm based on multi-scale sparse representation is introduced on the basis of the Human Visual System and over-complete sparse representation theory in this paper. Firstly, infrared and low light level images are decomposed according to the Gaussian pyramid model. Then a multi-scale learned dictionary is obtained by using an efficient quadtree decomposition of the DCT dictionary which is considered as the initial dictionary and each scale dictionary independent training update using K-SVD algorithm. We use the improved OMP algorithm with the dictionary to get the input sparse coefficients of source images. And then we get an optimization function of the fusion image sparse coefficients by optimizing the Euclidean distances between fused image and each input, weighted by their own variance. Finally, we obtain the fusion image by solving the Ii norm of the function. The experimental results show that the proposed method exhibits considerably higher fusion performance than the typical methods such as the wavelet transform method, the Laplacian pyramid method and Principal Component Analysis method.
出处 《红外技术》 CSCD 北大核心 2013年第11期696-701,共6页 Infrared Technology
基金 安徽省自然科学基金 编号:1208085QF126
关键词 图像融合 稀疏表示 多尺度字典 四叉树 K SVD算法 最优化函数 image fusion, sparse representation, multi-scale dictionary, quadtree, K-SVD algorithm,optimum function
  • 相关文献

参考文献17

二级参考文献99

共引文献67

同被引文献357

  • 1杨春玲,旷开智,陈冠豪,谢胜利.基于梯度的结构相似度的图像质量评价方法[J].华南理工大学学报(自然科学版),2006,34(9):22-25. 被引量:43
  • 2D. Donoho. Compressed sensing[C]//IEEE Transform on Information Theory, 2006, 52(4): 1289-1306.
  • 3Candes E, Tao T. Near optimal signal recovery from random projections: universal encoding strategies[J]. IEEE Transation on Information Theory, 2006, 52(12): 5406-5425.
  • 4Meng Ding, Li Wei, Bangfeng Wang. Research on fusion method for infrared and visible images via compressive sensing[J]. Infrared Physics & Technology, 2013(57): 56-67.
  • 5Donoho D L, Tsaie Y. Extensions of compressed sensing[J]. Signal Processing, 2006, 86(3): 533-548.
  • 6Donoho D L. For most large under-determined systems of linear equations the minimal ll-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829.
  • 7Needell D, Vershynin R. Uniform uncertainty principle and signal recovery via regularized orthognnal matching pursuit[J]. Foundations of Computational Mathematics, 2007, 9(3): 317-334.
  • 8Jamal Saeedi,Karim Faez.Infrared and visible image fusion using fuzzy logic and population based optimization[J].Applied Soft Computing,2012,12(3):1041-1054.
  • 9Wang,Z,Bovik A C,Sheikh H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Trans.on Image Processing,2004,13(4):600-612.
  • 10Toet A. Natural colour mapping for multiband nightvision imagery [J]. Information Fusion, 2003, 4(3): 155-166.

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部