期刊文献+

一种基于ROI的红外舰船目标定位方法 被引量:3

An Object Localization Algorithm Based on ROI for Ship IR Image
下载PDF
导出
摘要 提出了一种基于感兴趣区域ROI(Regions of Interest)的红外舰船目标定位方法,通过改进的Itti模型提取包含目标的感兴趣区域,实现目标定位。首先应用小波变换代替Itti模型的高斯滤波生成图像多尺度金字塔,并用center-surround算子提取多尺度的视觉差异,再将生成的视觉特征图进行归一化并线性组合,生成显著图,最后运用交替式有效子窗口搜索算法A-ESS(Alternating Efficient Subwindow Search)定位目标区域。实验结果表明:该方法能准确定位出目标区域。 An object localization algorithm based on ROI for ship IR image was developed. llae KOI with target was extracted by the improved Itti model. Firstly, the multi-scale pyramid was created by the wavelet transformation. After center-surround differences between different scales of the pyramids being calculated, some feature maps were obtained. Then these feature maps were combined into a saliency map with normalization and linear-fusion. Finally, object location was obtained by A-ESS in saliency map. Extensive experiments validate the good performance of the approach.
出处 《红外技术》 CSCD 北大核心 2013年第11期702-706,共5页 Infrared Technology
关键词 目标定位 视觉注意机制 感兴趣区域 显著图 object localization, visual attention mechanism, regions of interest, saliency map
  • 相关文献

参考文献11

  • 1王艳娟,陈晓红,黄晓欣.图像感兴趣区域检测技术[J].计算机与数字工程,2007,35(5):138-139. 被引量:10
  • 2Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20( 11 ): 1254-1259.
  • 3Walther D, Koch C. Modeling attention to salient proto-objects[J]. Neural Networks, 2006, 19(9): 1395-1407.
  • 4薛海斌,何东健.基于小波和生物视觉机制的感兴趣区域提取方法[J].杨凌职业技术学院学报,2011,10(1):13-15. 被引量:2
  • 5Leventhal A G. The neural basis of visual function[M]. CRC Press I Llc, 1991.
  • 6王群,何永强,周云川.基于小波和侧抑制网络的红外图像增强算法[J].红外技术,2011,33(9):541-544. 被引量:7
  • 7Ferrari V, Fevrier L, Jurie F, et al. Groups of adjacent contour segments for object detection[J]. IEEE-TPAM1, 2008, 30(1 ): 36-51.
  • 8Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//CVPR, 2005: 886-893.
  • 9Lampert C H, Blaschko M B, Hofmann T. Beyond sliding windows: object localization by efficient subwindow search[C]//CVPR, 2008: 1-8.
  • 10AN S, PEURSUM P, LIUW, et al. Efficient algorithms for subwind- ow search in object detection and localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009 264-271.

二级参考文献10

共引文献15

同被引文献319

  • 1王伟明,徐胜荣,姚庆栋,唐慧明.一种使用黑板模型实现的图象分割策略及在桥梁目标识别中的应用[J].计算机学报,1995,18(2):127-134. 被引量:13
  • 2张鹏,王润生.由底向上视觉注意中的层次性数据竞争[J].计算机辅助设计与图形学学报,2005,17(8):1667-1672. 被引量:5
  • 3袁进徐,赵建峰,董振平,周良伟.灰靶理论的空中目标威胁评估与排序[J].火力与指挥控制,2007,32(4):56-58. 被引量:10
  • 4杨云,朱长青,张德.高分辨率遥感影像上道路中心线的半自动提取[J].计算机辅助设计与图形学学报,2007,19(6):781-785. 被引量:22
  • 5朱晓强,余烨,刘晓平,等.基于航拍图像和LiDAR点云的城市道路提取[C]//计算机技术与应用进展,2008:1-6.
  • 6ITYI L. Automatic foveation for video compression using a neurobio- logical model of visual attention [ J ]. IEEE Trans. hnage Process-ing, 2004, 13(10) : 1304-1318.
  • 7CONNOR C E, EGETH H E, YANTIS S. Visual attention: tottom- up versus top-down[J]. Current Biology, 2004, 14(19) : 850-852.
  • 8LE CALLET P, NIEBUR E. Visual attention and applications in multimedia technologies [ J ]. Proceedings of the IEEE, 2013, 101 (9) : 2058-2067.
  • 9KOMOGORTSEV O, KHAN J. Predictive perceptual compression for real time video communication [ C ]//Proce. the 12th Annual ACM International Conference on Muhimedia. New York : [ s. n. ], 2004 : 220-227.
  • 10MARTINI M G, HEWAGE C. Flexible macroblock ordering for con- text-aware ultrasound video transmission over mobile WiMAX [ J ]. International Journal of Telemedicine and Applications, 2010 (6) : 6.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部