期刊文献+

结合机理和RBF的污水处理过程水质软测量模型

Water Quality Soft Sensor Model for Wastewater Treatment Process Based On Mechanism Model and RBF Neural Network
下载PDF
导出
摘要 针对活性污泥污水处理过程强非线性、不确定性和时变性等综合复杂特性,本文研究了污水水质COD的检测技术现状,并总结了现有水质软测量模型的存在问题,最后建立适应大范围变化工况条件、并具有较高精度的多模型结构的水质软测量模型。其中,工况识别机制采用案例推理技术实现,每个局部模型采用机理模型结合RBF神经网络技术实现。 Concerning the complex characters of the wastewater treatment with activated sludge process, i.e., nonlinear, uncertainty and time-varying, etc. This paper discusses current water quality COD detection technology, and existing problems of water quality soft sensor. The water quality soft sensor model, based on multi-model con- struction, is of high precision and adapts to changing conditions. The condition recognition mechanism is realized by case-based reasoning technology, and the partial models are completed by mechanism model and RBF neural network technique.
出处 《科技广场》 2013年第9期71-75,共5页 Science Mosaic
关键词 污水处理 水质模型 软测量 神经网络 Wastewater Treatment Water Quality Model Soft Sensor Neural Network
  • 相关文献

参考文献14

  • 1Qiumei Cong, Wen Yu, Tianyou Chai. Cas- cade Process Modeling with Mechanism-Based Hier- archical Neural Networks [J].International Journal of Neural Systems, 2010,20(01): 1-11.
  • 2Weijers S. R. Modelling, identification and control of activated sludge plants for nitrogen removal [D].The Netherlands: Technology University of Eind- hoven,2000.
  • 3Smets I Y,Haegebaert J V,Carrette R,Van Impe J F. Linearization of the activated sludge model ASMI for fast and reliable predictions [J].Water Re- search, 2003,37(08): 1831-1851.
  • 4Jeppsson U,Olsson G.Reduced order models for on-line parameter identification of the activated sludge process [J].Water Science and Technology, 1993,28(11): 173-183.
  • 5Teppola P, Mujunen S P, Minkkinen P. Partial least squares modeling of an activated sludge plant:A case study[J].Chemometrics and Intelligent Laboratory Systems, 1997,38(02) : 197-208.
  • 6Zhu J B,Zurcher J,Rao M,Meng M Q-H.An on-line wastewater quality predication system based on a time-delay neural network [J].Engineering Appli- cations of Artificial Intelligence, 1998,11 (06): 747-758.
  • 7Yoo C K, Vanrolleghem P A, Lee I B. Nonlin- ear modeling and adaptive monitoring with fuzzy and multivariate statistical methods in biological wastewa- ter treatment plants [J].Journal of Biotechnology, 2003,105(01): 135-163.
  • 8赵立杰,张金玲,陶成虎.污水处理出水水质指标的非线性动态软测量模型[J].沈阳化工学院学报,2009,23(3):258-265. 被引量:6
  • 9李勇,邵诚.软测量技术及其应用与发展[J].工业仪表与自动化装置,2005(5):6-11. 被引量:14
  • 10李建兵.活性污泥法及其在环境工程中的应用[J].江西化工,2007(4):46-48. 被引量:5

二级参考文献26

  • 1穆罕默德.阿塔,祝如松,蒋慰孙.间歇精馏塔塔板效率的在线模式识别[J].信息与控制,1993,22(1):47-49. 被引量:2
  • 2谢国军.浅谈活性污泥法的适用性[J].中国现代医药科技,2005,5(1):52-52. 被引量:1
  • 3刘利梅.处理废水的有效方法—活性污泥法[J].一重技术,2005(4):68-69. 被引量:1
  • 4王旭东,邵惠鹤.神经元网络建模与软测量技术[J].化工自动化及仪表,1996,23(2):28-31. 被引量:30
  • 5Lee D S, Jeon C O, Park J M, et al. Hybrid Neural Network Modeling of a Full-scale Industrial Wastewater Treatment Process [ J ]. Biotecbnology and Bioengineering ,2002,78 ( 6 ) :670 - 682.
  • 6Lee D S, Park J M, Vanrolleghem P A. Adaptive Multiscale Principal Component Analysis for On-line Monitoring of a Sequencing Batch Reactor[ J]. J of Biotechnol. ,2005,116 (2) : 195 - 210.
  • 7Lee D S, Vanrolleghem P A. Monitoring of a Sequencing Batch Reactor Using Adaptive Multiblock Principal Component Analysis [ J ]. Biotechnology Bioeng,2003,82(4) :489 -497.
  • 8MacGregor J F ,Kourti T. Statistical Process Control of Multivariate Processes [ J ]. Control Eng. Practice, 1995,3 ( 3 ) :403 - 414.
  • 9Wise B M, Gallagher N B. The Process Chemomettics Approach to Process Monitoring and Fault Detection [ J ]. J Proc Control, 1996,6 ( 6 ) : 329 - 348.
  • 10Geladi P, Kowalski B R. Partial Least-Squares Regression [ J ]. Anal Chim Acta, 1986,185 : 1 - 17.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部