期刊文献+

低速湍流中气动噪声预测方法 被引量:2

A Prediction Method for Low-speed Turbulent Flow Noise
原文传递
导出
摘要 为了研究气动噪声的产生机理和传播过程,在考虑介质黏性的影响情况下,采用分解法并结合湍流模型,对低速湍流流动中气动噪声问题在时域上进行数值计算。基于非结构化同位网格和有限体积法,把可压缩N-S方程分解成不可压N-S方程、含黏性项的声扰动方程;为了考虑质点振速和声压耦合,采用SimpleC算法来同步求解不可压N-S方程和声扰动方程。进出口远场边界采用以渐近解为基础的无反射边界条件,并采用与内部区域相对应的有限体积法、时间隐式格式对其进行求解。利用所编制的程序进行层流状态下圆柱绕流气动噪声仿真验证,并与文献结果进行对比,检验本方法的正确性;并结合湍流模型将数值解法推广到湍流状态下气动噪声数值模拟中。结果表明该方法能够很好地反映流场和声场的形态,无反射边界能很好地抑制声波在边界处的反射,适合低速流气动噪声问题模拟,为实际工程中的降噪工作提供预测信息。 In order to study acoustic noise generation and propagation while considering that internal viscosity of the propagation medium affects the results of aeroacoustics numerical simulation, a decomposition technique and a turbulent model were introduced in time- domain. Based on an unstructured collocated grid and finite volume method, the compressible N-S equation was divided into a viscous incompressible N-S equation and the viscous perturbation equation, and a SimpleC algorithm was used to solve the problem of velocity- pressure decoupling. Appropriate non-reflecting boundary conditions were adopted at the inflow and outflow boundaries. The governing acoustic equations of boundaries are discretized over finite volume method and the transient term is discretized by the second-order Euler implicit scheme. Numerical simulation of noise induced by flow around a circular cylinder at small and big Reynolds number has been conducted and compared with the aeroaeoustic theory in time domain, in order to study the effect of viscosity on aeroacoustic numerical simulation. Comparing the two results, good results and more details about flow and sound could be obtained by splitting method, which could be used to provide some information for reducing the noise in actual engineering. The work demonstrated that the numerical algorithm can be used for the simulation and analysis of flow-induced noise at a flow with low speed.
出处 《科技导报》 CAS CSCD 北大核心 2013年第32期15-19,共5页 Science & Technology Review
基金 中央高校基本科研业务费专向基金项目(HEUCF100307)
关键词 气动噪声 湍流模型 低速流 非结构化网格 有限体积法 flow noise turbulent mode low-speed flow unstructured grid finite volume method
  • 相关文献

参考文献15

  • 1Lighthill M J. On sound generated aerodynamically. I: General theory[J]. Proceedings of the Royal Society of London Series A. Mathematical and Physical Sciences, 1952, 211(1107): 564-587.
  • 2Morris P J, Long L N, Bangalore A, et al. A parallel three-dimensional computational aeroacoustics method using nonlinear disturbance equations[J], Journal of Computational Physics, 1997, 133(1): 56-74.
  • 3Shen W Z, Zhu W J, Sorensen J N. Aeroacoustic computations forturbulent airfoil flows[J]. AIAA Journal, 2009, 47(6): 1518-1527.
  • 4Shen W Z, Sorensen J N. Aeroacoustic modeling of turbulent airfoil flows [J]. AIAA Journal, 2001, 39(6): 1057-1064.
  • 5Zhu W J, Shen W Z, Sorensen J N. High-order numerical simulations of flow-induced noise [J]. International Journal for Numerical Methods in Fluids, 2011, 66(1): 17-37.
  • 6Moon Y J, Seo J H, Bae Y M, et al. A hybrid prediction method for low-subsonic turbulent flow noise[J]. Computers & Fluids, 2010, 39(7): 1125-1135.
  • 7Cheong C, Joseph Park Y, et al. Computation of aeolian torte from a circular cylinder using source models[J]. Applied Acoustic, 2008, 69(2): 110-126.
  • 8Long Shuangli, Nie Hong, Xu Xin. Technical Acoustics, 2011, 30 (2): 111-116.
  • 9Lu Yuntao, Zang Huaixin, Pan Xujie. Journal of Vibration and Shock, 2008, 27(9): 142-146.
  • 10Meng Sheng, Zhang Yuwen, Wang Yanfeng. Computer Simulation, 2011, 28(7): 57-62.

同被引文献14

  • 1SHEN Wenzhong, MICHELSEN J A, N?RKАR S?RENSEN J. A collocated grid finite volume method for aeroacoustic computations of low-speed flows[J]. Journal of computational physics, 2004, 196(1): 348-366.
  • 2LIGHTHILL M J. On sound generated aerodynamically. I: General theory[C]//Proceedings of the Royal Society A. London: 1952.
  • 3CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal society of London: series a, mathematical and physical sciences, 1955, 231(1187): 505-514.
  • 4FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Proceedings of the Royal society of London: series a, mathematical and physical sciences, 1969, 264(1151): 321-342.
  • 5FARASSAT F. Theory of noise generation from moving bodies with and application to helicopter rotors. NASA Technical Report R-451, L-10379[R]. Washington, DC: NASA, 1975.
  • 6BOGEY C, BAILLY C, JUV? D. Computation of flow noise using source terms in linearized Euler’s equations[J]. AIAA journal, 2002, 40(2): 235-243.
  • 7HARDIN J C, POPE D S. An acoustic/viscous splitting technique for computational aeroacoustics[J]. Theoretical and computational fluid dynamics, 1994, 6(5): 323-340.
  • 8SHEN Wenzhong, N-OACUTE J, S-OACUTE R. Comment on the aeroacoustic formulation of Hardin and pope[J]. AIAA journal, 1999, 37(1): 141-143.
  • 9SHEN Wenzhong, S?RENSEN J N. Aero-acoustic modelling using large eddy simulation[J]. Journal of physics, 2007, 75: 012085.
  • 10HENDERSON R D. Details of the drag curve near the onset of vortex shedding[J]. Physics of fluids, 1995, 7(9): 2102-2104.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部