期刊文献+

基于三链和3-臂DNA模型的图聚类算法 被引量:1

GRAPH CLUSTERING ALGORITHM BASED ON TRIPLE-STRANDED AND 3-ARMED DNA MODELS
下载PDF
导出
摘要 为了利用DNA计算求解图聚类问题,提出一种结合三链DNA和3-臂DNA模型的图聚类算法。基于k-medoids算法的思想,对图的顶点及边进行划分,将初始解空间的规模限定为O(n2)。使用三链DNA模型筛选可行解的方法可推广到更多基于双链结构的算法设计中,3-臂DNA模型可通过对数据的预处理应用于更大规模的聚类问题。 In order to take the advantage of DNA computing to solve graph clustering, an algorithm combining triple-stranded DNA with 3-armed DNA model for graph clustering is proposed. Based on the idea of k-medoids algorithm, we divide the vertices and edges of the graph and limit the size of initial solution space to O( n^22 ). The method of screening feasible solution with triple-stranded DNA could be extended to more DNA algorithms using double-stranded structure. And 3-armed DNA model would be further applied to more large-scale clustering problems by pre-proeessing the data.
作者 白雪 刘希玉
出处 《计算机应用与软件》 CSCD 北大核心 2013年第11期32-33,135,共3页 Computer Applications and Software
基金 国家自然科学基金项目(61170038) 山东省自然科学基金项目(ZR2011FM001)
关键词 DNA计算 图聚类 k-medoids算法 三链DNA模型 3-臂 DNA模型 DNA computing ,Graph clustering ,K-medoids algorithm ,Triple-stranded DNA model, 3-armed ,DNA model
  • 相关文献

参考文献10

  • 1温菊屏,钟勇.图聚类的算法及其在社会关系网络中的应用[J].计算机应用与软件,2012,29(2):161-163. 被引量:16
  • 2Biemann C. Chinese whispers: an effcient graph clustering algorithm and its application to natural language processing problem [ C ]//Pro- ceedings of the HLT-NAACL-06 Workshop on Textgraphs, New York, 2006. Stroudsburg:Association for Computational Linguistics ,2006.
  • 3夏宁霞,苏一丹,覃希.一种高效的K-medoids聚类算法[J].计算机应用研究,2010,27(12):4517-4519. 被引量:47
  • 4杨静,殷志祥.基于抗原中介三链DNA结构的0-1整数规划[J].计算机工程与应用,2008,44(2):76-79. 被引量:11
  • 5Fang G, Xu J, Zhang S M. Performing DNA computation with RecA-me- diated triple-stranded DNA structure [ J ]. Natural Computing, 2009,8 (1) :149 -156.
  • 6Yang J, Yin Z X, Huang K F. The working operation problem on triple- stranded DNA structure model [ C ]//Global Congress on Intelligent Systems. Washington : IEEE Computer Society,2009.
  • 7Wang X, Seeman N C. Assembly and characterization of 8-Arm and 12- Arm DNA branched junctions [ J]. Journal of the American Chemical Society,2007,129 ( 26 ) : 8169 - 8176.
  • 8Abu Bakar R B, Watada J. A biologically inspired computing approach to Solve cluster-based determination of logistic problem[ J ]. Biomedical Soft Computing and Human Sciences ,2008,13 ( 2 ) :59 - 66.
  • 9Yang J, Yin Z X, Huang K F. The postman problem based on triple- stranded DNA structure model [ C ]//First International Conference on Cellular,Molecular Biology, Biophysics and Bioengineering(CMBB) , Kun Shan,2010, Piscataway : IEEE Press ,2010.
  • 10孙伟,尤加宇,江宏,焦奎.纳米粒子标记DNA探针的制备与检测应用[J].中国卫生检验杂志,2005,15(8):1008-1010. 被引量:7

二级参考文献42

  • 1HAN Jia-wei,KAMBER M.数据挖掘概念与技术[M].2版.北京:机械工业出版社,2008:263-266.
  • 2CHEN Xin-quan,PENG Hong,HU Jing-song.K-medoids substitution clustering method and a new clustering validity index method[C] //Proc of the 6th World Congress on Intelligent Control and Automation.2006:5896-5900.
  • 3HE Zeng-you.Farthest-point heuristic based initialization methods for K-modes clustering[EB/OL].(2006-10-10).http://arxiv.org/ftp/cs/papers/0610/0610043.pdf.
  • 4PARK H S,JUN C H.A simple and fast algorithm for K-medoids clustering[J].Expert Systems with Applications,2009,36(2):3336-3341.
  • 5PARDESHI B,TOSHNIWAL D.Improved K-medoids clustering based on cluster validity index and object density[C] //Proc of the 2nd IEEE International Advance Computing Conference.2010:379-384.
  • 6GAO Dan-yang,YANG Bing-ru.An improved K-medoids clustering algorithm[C] //Proc of the 2nd International Conference on Computer and Automation Engineering(ICCAE).2010:132-135.
  • 7BARIONI C N M,RAZENTE H L,TRAINA A J M,et al.Accelerating K-medoid-based algorithms through metric access methods[J].The Journal of Systems and Software,2008,81(3):343-355.
  • 8PARTYKA J,KHAN L,THURAISINGHAM B.Semantic schema matching without shared instances[C] //Proc of IEEE International Conference on Semantic Computing.2009:297-302.
  • 9DataSet[EB/OL].(2010).http://archive.ics.uci.edu/ml/datasets.html.
  • 10Venu Satuluri, Srinivasan Parthasarathy. Scalable graph clustering using stochastic flows : applications to community discovery [ C ]//KDD, Par- is, France ,2009:737 - 746.

共引文献76

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部