期刊文献+

基于小波和各向异性扩散的PET图像MLEM重建算法 被引量:5

MLEM RECONSTRUCTION ALGORITHM FOR PET IMAGE BASED ON WAVELET AND ANISOTROPIC DIFFUSION
下载PDF
导出
摘要 在正电子发射断层成像中,经典的MLEM(Maximum Likelihood Expectation Maximization)算法具有收敛速度慢、不能有效抑制噪声的不足。为了解决该问题,通常在迭代过程中加入正则项来改善MLEM的重建性能。提出一种新的基于小波收缩和各向异性扩散的去噪算法,将该算法与MLEM算法结合起来形成一种新的PET(Positron Emission Tomography)重建方法。实验结果表明,该算法在降低复杂性、保持较高收敛速度的同时,能获得较高的信噪比和较好的图像视觉效果。 In positron emission tomography (PET) imaging, traditional maximum likelihood expectation maximisation (MLME) algorithm has the deficiencies of converging slowly and can not suppress noise effectively. To address this problem, usually the regularisation term would be introduced to iterative process to improve the reconstruction performance of MLEM. In this paper, we propose a new denoising algorithm which is based on wavelet shrinkage and anisotropic diffusion, and combine this algorithm with the MLEM algorithm to form a novel PET reconstruction method. Experimental results show that this algorithm can obtain higher SNR and superior visual effect on images while reducing the complexity and keeping higher convergence rate.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第11期50-53,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61071192 61271357) 山西省自然科学基金资助项目(2009011020-2) 山西省高等学校优秀青年学术带头人支持计划资助项目
关键词 正电子发射断层成像 最大似然期望最大 小波收缩 各向异性扩散 Positron emission tomography imaging Maximum likelihood Expectation maximisation Wavelet shrinkage Anisotropic dif-fusion
  • 相关文献

参考文献15

  • 1Tarantola G, Zito F, Gerundini P. PET instrumentation and reconstruc- tion algorithms in whole-body applications [ J ]. Journal of Nuclear Medicine ,2003 ,d4 ( 5 ) :756 - 769.
  • 2Shepp L A, Vardi Y. Maximum likelihood reconstruction for emission tomography [ J ]. IEEE Trans. Med. Imag. , 1982,1 ( 2 ) : 113 - 122.
  • 3Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothness[ J]. IEEE Trans. Med. Imag. ,1990,9(4) :439 -446.
  • 4Zhu H Q, Shu H Z, Zhou J, et al. Image reconstruction for positron e- mission tomography using fuzzy nonlinear anisotropic diffusion penalty [J]. Medical and Biological Engineering and Computing, 2006,44 (11) :983 -997.
  • 5Zhan J, Chen W F. Bayesian Reconstruction Algorithm for PET Using New Markov Quadratic Hybrid Multi-Order Priors [ C ] //Bioinformat- ics and Biomedical Engineering ICBBE, Wuhan, China, IEEE Press, 2007:334 - 337.
  • 6Qi j, Leahy R M. Iterative reconstruction techniques in emission com- puted tomography[ J]. Phys Med. Biol. ,2006, 51 (15) :541 - 578.
  • 7王国华,窦慧丽,郭敏.基于小波分析的交通数据自适应消噪算法研究[J].计算机应用与软件,2011,28(10):4-6. 被引量:6
  • 8Chao S M, Tsai D M. Anisotropic diffusion with generalized diffusion coefficient function for defect detection in low-contrast surface images [ J ]. Pattern Recognition ,2010,43 : 1917 - 1931.
  • 9Chao S M, Tsai D M. An improved anisotropic diffusion model for detail and edge pre-serving smoothing[ J]. Pattern Recognition Letters,2010, 31 ( 13 ) :2012 - 2023.
  • 10王东明,卢虹冰,张军英,刘欣.基于统计特性的小波噪声抑制在低剂量CT中的应用[J].中国图象图形学报,2008,13(5):876-881. 被引量:6

二级参考文献19

  • 1韩超,宋苏,王成红.基于ARIMA模型的短时交通流实时自适应预测[J].系统仿真学报,2004,16(7):1530-1532. 被引量:95
  • 2翁小雄,谭国贤,姚树申,黄征.城市交叉口交通流特征与短时预测模型[J].交通运输工程学报,2006,6(1):103-107. 被引量:23
  • 3陈淑燕,王炜,李文勇.实时交通数据的噪声识别和消噪方法[J].东南大学学报(自然科学版),2006,36(2):322-325. 被引量:20
  • 4Turner S M. Archived ITS data quality : Preliminary Analysis of San An- tonio TransGuide Data [ R]. In Transportation Research Record 1719. Transportation Research Board, Washington, D. C. ,2000:77 - 84.
  • 5胡昌华.基于matlab的系统分析与设计[M].西安:西安电子科技大学出版社,1998.
  • 6Donoho D L.Denoising by soft thresholding[J].IEEE Trans Information Theory,1995,41(3):613-627.
  • 7Rudin L,et al.Nonlinear total variation based noise removal algorithms[J].Phys D,1992,60(1-4):259-268.
  • 8Steidl G,Weickert J.Relations between soft wavelet shrinkage and total variation denoising[A].Proceedings of the 24th DAGM Symposium on Pattern Recognition[C].London:Springer Press,2002.198-205.
  • 9Mrazek P,et al.Correspondences between wavelet shrinkage and nonlinear diffusion[A].Scale Space Methods in Computer Vision[C].Berlin:Springer Press,2003.101-116.
  • 10Steidl G,et al.On the equivalence of soft wavelet shrinkage,total variation diffusion,total variation regularization,and SIDEs[J].SIAM Numerical Analysis,2004,42(2):686-713.

共引文献43

同被引文献49

  • 1雷正龙,赵耀邦,陈彦宾,马少义,孙忠绍.激光深熔焊接等离子体发射光谱诊断研究[J].航空制造技术,2011,0(9):73-76. 被引量:5
  • 2胡绳荪,张绍彬,赵家瑞.电弧强化激光焊[J].焊接学报,1993,14(3):159-163. 被引量:23
  • 3黄世亮,裘鉴卿.基于各向异性扩散和小波变换的磁共振图像降噪和增强方法[J].中国医学影像技术,2005,21(9):1437-1439. 被引量:3
  • 4张顺利,张定华,赵歆波.代数重建法中的一种快速投影系数计算方法[J].计算机应用研究,2007,24(5):38-40. 被引量:11
  • 5Wang J, Li T F, Lu H B, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography[J]. IEEE Transactions on medical imaging, 2006, 25(10): 1272-1283.
  • 6Wang Jing, Lu Hongbing. Multiscale penalized weigh- ted least-squares sonogram restoration for low-dose X- ray computed tomography[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(3): 1022-1032.
  • 7Zhang Q, Gui Z G, Chen Y, et al. Bayesian sinogram smoothing with an anisotropic diffusion weighted prior for low-dose X-ray computed tomography[J]. Optik - International Journal for Light and Electron Optics, 2013, 124(17): 2811-2816.
  • 8Rust G F, Aurich V , Reiser M. Noise dose reduction and image improvements in screening virtual colonoscopy with tube currents of 20 mAs with nonlinear Gaussian filter chains [C]. Medical Imaging 2002 Conference. New York.. IEEE, 2002: 186-197.
  • 9Chen Y, Gao D Z, Nie C, et al. Bayesian statistical reconstruction for low-dose X-ray computed tomo- graphy using an adaptive-weighting local nonprior[J]. Computerized Medical Imaging and Graphics, 2009, 33(7) : 495-500.
  • 10Li T, Li X, Wang J, et al. Nonlinear sinogram smoothing for low-dose X-ray CT[J]. IEEE Trans-actions on Nuclear Science, 2004, 51 (5): 2505- 2513.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部