摘要
在正电子发射断层成像中,经典的MLEM(Maximum Likelihood Expectation Maximization)算法具有收敛速度慢、不能有效抑制噪声的不足。为了解决该问题,通常在迭代过程中加入正则项来改善MLEM的重建性能。提出一种新的基于小波收缩和各向异性扩散的去噪算法,将该算法与MLEM算法结合起来形成一种新的PET(Positron Emission Tomography)重建方法。实验结果表明,该算法在降低复杂性、保持较高收敛速度的同时,能获得较高的信噪比和较好的图像视觉效果。
In positron emission tomography (PET) imaging, traditional maximum likelihood expectation maximisation (MLME) algorithm has the deficiencies of converging slowly and can not suppress noise effectively. To address this problem, usually the regularisation term would be introduced to iterative process to improve the reconstruction performance of MLEM. In this paper, we propose a new denoising algorithm which is based on wavelet shrinkage and anisotropic diffusion, and combine this algorithm with the MLEM algorithm to form a novel PET reconstruction method. Experimental results show that this algorithm can obtain higher SNR and superior visual effect on images while reducing the complexity and keeping higher convergence rate.
出处
《计算机应用与软件》
CSCD
北大核心
2013年第11期50-53,共4页
Computer Applications and Software
基金
国家自然科学基金项目(61071192
61271357)
山西省自然科学基金资助项目(2009011020-2)
山西省高等学校优秀青年学术带头人支持计划资助项目
关键词
正电子发射断层成像
最大似然期望最大
小波收缩
各向异性扩散
Positron emission tomography imaging
Maximum likelihood
Expectation maximisation
Wavelet shrinkage
Anisotropic dif-fusion