期刊文献+

基于特征的点云精确配准算法 被引量:7

ACCURATE REGISTRATION ALGORITHM FOR POINT CLOUD BASED ON PROPERTIES
下载PDF
导出
摘要 在散乱点云的配准过程中,由于不同次扫描得到的点云模型之间的重叠部分可能较小且点云具有丰富的几何细节,致使传统ICP(Iterative Closest Point)精确配准算法很难得到理想精度。针对这个问题以Chen和Medioni提出的点面距离误差测度函数为基础,结合基于特征的点云配准思想,设计了一种先建立拥有接近的主曲率的匹配点对集合,然后将二次拟合曲面间的平均距离作为误差测度进行迭代优化的精确配准算法。该算法在微小距离精确配准的应用环境下能提供相对于传统ICP算法更好的精度和更高的效率。 In process of scattered point cloud registration, since the overlapping portions of point cloud models derived from scanning in different times are "always quite small, plus the point cloud has abundant geometric details, this makes the ideal accuracy becomes difficult to be gained by traditional ICP accurate registration algorithm. In light of this problem, we design an accurate registration algorithm, it is based on the metric function of point to surface distance error put forward by Chen and Medioni, and combining the property-based point cloud registration idea. First it establishes matching points set with closed main curvatures, and then it takes the average distance between quadric fitting surfaces as the error metric for iterative optimisation. In application environment of minute distance, this algorithm can provide better precision and higher efficiency than the traditional ICP algorithm.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第11期112-114,122,共4页 Computer Applications and Software
基金 国家科技支撑计划项目(2009BAI81B00)
关键词 散乱点云 ICP算法 主曲率 精确配准 Scattered point cloud, ICP algorithm ,Main curvature, Accurate registration
  • 相关文献

参考文献12

  • 1Besl P J, McKay N D. A method for registration of 3-D shapes [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992,14(2) :239-256.
  • 2Bu Yanlong, Peng Shuangchun,Wang Nan, et al. Constriction of Mutual Information Based Matching-suitable Features for SAPt Image Aided Navigation[ C ]//Environmental Science and Information Application Technology Volume 1, Wuhan, July, 2009.
  • 3Ko K H ,Maekawa T,Patrikalakis N M. An algorithm for optimal free-form object matching[ J ]. Computer-Aided Desigtt,2003,35 (10) :913 - 923.
  • 4Niloy J M, Natasha G. Registration of Point Cloud Data from a Geomet- ric Optimization Perspective [ C ]//Eurogarphics Symposium on Geome- try Processing ,2004.
  • 5Rzfael C Gonzalez, Richard E Woods. Digital Image Processing [ M ]. Beijing: Publishing house of Electronics Industry, 2002.
  • 6Chen ~, Medioni G. Object modeling by registration of muhiple range images [ J]. Image and Vision Computing , 1992,10 (3).
  • 7Okatan I S, Deguchi I K. A method for fine registration of multiple vie- wing rang images considering the measurement error properties [ J ]. Computer Vision and Image Understanding,2002,87 ( 1 - 3 ) :66 - 77.
  • 8胡鑫,习俊通,金烨.反求工程中散乱点云数据的自动分割与曲面重构[J].上海交通大学学报,2004,38(1):62-65. 被引量:30
  • 9DAVID A F,JEAN P.计算机视觉一种现代方法[M].北京:电子工业出版社,2004.
  • 10杨现辉,王惠南.ICP算法在3D点云配准中的应用研究[J].计算机仿真,2010,27(8):235-238. 被引量:91

二级参考文献24

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:99
  • 2张学昌,习俊通,严隽琪.基于点云数据的复杂型面数字化检测技术研究[J].计算机集成制造系统,2005,11(5):727-731. 被引量:27
  • 3贺美芳,周来水,神会存.散乱点云数据的曲率估算及应用[J].南京航空航天大学学报,2005,37(4):515-519. 被引量:27
  • 4[1]Fitzgibbon A W, Eggert D W, Fisher R B. Highlever CAD model acquisition[J]. Computer Aided Design, 1997,29 (4): 321- 330.
  • 5[3]Yang M, Lee E. Segmentation of measured point data using a parametric quadric surface approximation [J]. Computer Aided Design, 1999,31 (7): 449- 457.
  • 6[4]SunW, Bradley C, Zhang Y F, et al. Cloud data modeling employing a unified, non-redundant triangular mesh[J]. Computer Aided Design ,2001,33(3):183-193.
  • 7[5]Hoppe H, De R T, Duchamp T. Surface reconstruction from unorganized points [J]. Computer Graphics,1992,26(2):71-78.
  • 8[6]Oblonsek C, Guid N. A fast surface-based procedure for object reconstruction from 3D scattered points [J]. Computer Vision and Image Understanding,1998,69(2): 185- 195.
  • 9[8]Chen Y H, Liu C Y. Quadric surface extraction using genetic algorithms [J ]. Computer Aided Design,1999,31 (2):101-110.
  • 10[9]Cohen F S, Ibrahim W, Pintavirooj C. Ordering and parameterizing scattered 3D data for B-spline surface approximation [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000,22 (6): 642-648.

共引文献285

同被引文献50

  • 1尹旺中,周来水,神会存,安鲁陵.基于三角片法矢调整的三角网格模型光顺[J].机械科学与技术,2006,25(4):410-414. 被引量:6
  • 2蔡喜平,李惠民,刘剑波,高劭宏.主动式光学三维成像技术概述[J].激光与红外,2007,37(1):22-25. 被引量:11
  • 3刘春,吴杭彬.基于平面不规则三角网的DEM数据压缩与质量分析[J].中国图象图形学报,2007,12(5):836-840. 被引量:29
  • 4戴静兰,陈志杨,叶修梓.ICP算法在点云配准中的应用[J].中国图象图形学报,2007,12(3):517-521. 被引量:196
  • 5Dun WZ,Hun G,Hong LX,et al.The research of optical 3D measuring precision influencing factor in reverse engineering[J].Applied Mechanics an Materials,2010,33:157-162.
  • 6Du SY,Zheng NN,Ying SH,et al.Affine iterative closest point algorithm for point set registration[J].Pattern Recognition Letter,2010,31(9):791-799.
  • 7Hacene A,Mekki A.Bio-CAD reverse engineering of freeform surfaces by planar contours[J].Computer-Aid Design&Applications,2011,8(1):37-42.
  • 8Senin N,Colosimo BM,Pacella M.Point set augmentation through fitting for enhanced ICP registration of point clouds in multisensory coordinate metrology[J].Robotics and Computer-Integrated Manufacturing,2013,29(1):39-52.
  • 9Karen RS,Alexandra SC.Reliability of photogrammetry in the evaluation of postural aspect of individuals with structural scoliosis[J].Journal of Bodywork and Movement Therapies,2011,16(2):210-216.
  • 10PCL点云库官网.点云数据库[EB/OL].[2014-10-06].http://www.pointclouds.org/.

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部