期刊文献+

混合翼身布局客机SAX-40水上迫降力学性能数值研究 被引量:15

Ditching Performance of Silent Aircraft SAX-40 in Hybrid Wing-body Configuration
原文传递
导出
摘要 为了验证未来混合翼身布局飞机的水上迫降力学性能,数值求解非定常雷诺时均Navier-Stokes(URANS)方程和Realizableκ-ε湍流模型,采用动网格方法处理飞机与水面间的相对运动、流体体积(VOF)模型追踪水面变形,模拟了SAX-40飞机刚性模型以12°初始俯仰角在平静水面上迫降的过程。结果分析表明:迫降过程中,触水时的冲击作用导致飞机下表面水线附近产生较大的正压峰值,入水后的浸没滑行作用导致机身下表面尾部弯曲部分出现大面积的负压,使得飞机发生大幅抬头;迫降过程中飞机的法向载荷峰值为2.87 G,纵向载荷峰值为1.05 G,表面冲击压力峰值为720kPa。SAX-40飞机在水上迫降过程中有跳离水面的不稳定运动趋势,进行混合翼身布局设计时应予考虑。 The planned ditching of aircraft SAX-40 on calm water is numerically simulated to investigate the ditching per- formance of the hybrid wing-body configuration. The unsteady Reynolds-averaged Navier-Stokes (URANS) equations and the Realizable K-E turbulence model are solved by a fluent solver. The relative motion between the aircraft and water is handled by the dynamic mesh method. The air-water interface is tracked by a volume of fluid (VOF) model. During the ditching process, the impact brings about the positive pressure peak on the aircraft's lower surface near the waterline; and the pla- ning brings forth the negative pressure on the aft curved portion of the aircraft's lower surface, resulting in a suck force and a strong nose-up pitch motion. As the aircraft touches the water, the normal load increases rapidly to 2.87G, and the longi- tudinal load to 1.05G. The slamming pressure reaches a peak of about 720 kPa. This airplane bounces up from the water and this defective performance should be considered during the design of a hybrid wing-body configuration.
出处 《航空学报》 EI CAS CSCD 北大核心 2013年第11期2443-2451,共9页 Acta Aeronautica et Astronautica Sinica
基金 航空科学基金(20102351023) 高等学校博士学科点专项科研基金(20091102120021) 国家"973"计划(2009CB72400101)
关键词 水动力学 水上迫降 有限体积法 运输机 多相流 入水冲击 混合翼身布局 hydrodynamics ditching finite volume method transport aircraft multiphase flow water impact hybridwing-body configuration
  • 相关文献

参考文献3

二级参考文献74

  • 1朱自强,王晓璐,吴宗成,陈泽民.民机设计中的多学科优化和数值模拟[J].航空学报,2007,28(1):1-13. 被引量:17
  • 2Green J E. Air travel-greener by design mitigating the environmental impact of aviation: opportunities and priorities[J]. The Aeronautical Journal, 2005,109(1099):495-510.
  • 3Green J E. Civil aviation and the environment-the next frontier for the aerodynamicist [J]. The Aeronautical Journal, 2006,109(1099) :469-486.
  • 4Dowling A, Greiter E D. The silent aircraft initiative-overview[R]. AIAA 2007-0452,2007.
  • 5Spakovszky Z S. Toward a "silent" aricraft[C]//22nd Syrup On aviation noise and air quality. 2007.
  • 6Diedrich A, Hileman J, Tan D, et al. Mulitidisciplinary design and optimization of the silent aircraft[R]. AIAA 2006-1323,2006.
  • 7Liebeck R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1):10-25.
  • 8Hileman J I, Spakovszky Z S, Drela M. Airframe design for "silent aircraft"[R]. AIAA 2007-453,2007.
  • 9Hileman J I, Spakovszky Z S, Drela M, et al. Aerodynamic and acroacoustic three dimensional design for a silent aircraft[R]. AIAA 2006-241, 2006.
  • 10Hileman J I, Reynolds T G, de la Blanca R E, et al. Development of approach procedures for silent aireraft[R]. AIAA 2007-451, 2007.

共引文献41

同被引文献96

引证文献15

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部