摘要
针对支持向量机的参数优化缺乏理论支持,而SVM交叉检验法选取又较为费时的情况下,提出了基于人工鱼群算法的支持向量机参数优化选取算法,并以SVM分类预测准确率最大为优化原则,利用人工鱼群算法的较好并行性和较强的全局寻优能力,以实现最优目标并得到SVM的最优参数组合。数值实验结果表明:人工鱼群算法在SVM参数优化选取中具有更快的寻优性能,同时具有较高的分类准确率。该方法具有较好的并行性和较强的全局寻优能力。
As considering that the parameter optimization of support vector machine lacks theory support and the SVM cross-validation method spends lots of time on selecting parameters, the parameter optimization selection method of support vec- tor machine is proposed based on artificial fish-swarm algorithm. This method puts the SVM classification prediction accuracy rate as the optimization principle and uses the better parallelism of artificial fish-swarm algorithm and the stronger global optimi- zation ability to achieve the optimal target and obtain optimal parameter combination of SVM. The results of numerical value experi- ments show that the artificial fish-swarm algorithm has faster performance optimization and higher classification accuracy rate in SVM parameters' optimization selection. This method has the better parallelism and the stronger global optimization ability.
出处
《计算机工程与应用》
CSCD
2013年第23期86-90,共5页
Computer Engineering and Applications
基金
辽宁省教育厅基金项目(No.L2012105)
关键词
支持向量机
人工鱼群算法
参数优化
遗传算法
support vector machine
artificial fish-swarm algorithm
parameter optimization
genetic algorithm