期刊文献+

最小二乘支持向量机和证据理论融合的体育视频分类 被引量:9

Sports video classification based on evidence theory and improved support vector machine
下载PDF
导出
摘要 针对单一特征的体育视频分类的正确率低和稳定性差等缺陷,提出一种最小二乘支持向量机(LSSVM)和证据理论相融合的体育视频分类模型(DS-LSSVM)。提取颜色、纹理、亮度、运动矢量场等4种反映体育视频类别特征,将4种单特征的LSSVM初步分类结果作为独立证据构造基本概率指派,运用DS组合规则进行决策级融合,根据分类判决门限给出最终的体育视频分类结果,最后进行仿真实验。结果表明,DS-LSSVM的体育视频分类正确率高达97.90%,相对于参比模型,DS-LSSVM具有体育视频分类正确率高、稳定性好等优势。 The correct rate of sports video classification for single feature is very low and stability is poor, this paper proposes a sports video classification method combining Least Squares Support Vector Machine (LSSVM) with evidence theory (DS-LSSVM). The color, texture, brightness, motion vector features of sports video are extracted, and then the extracted features are input into LSSVM to learn and get the preliminary classification results which are taken as evidence to establish the basic probability assignment, and DS is used to decide level fusion, the final sports video classification results are got according to the classifica- tion threshold, the simulation experiment is carried out. The simulation results show that the classification rate of the proposed algorithm reaches 97.90%, compared with the reference algorithms, the proposed algorithm has high video classification rate and good stability advantages.
出处 《计算机工程与应用》 CSCD 2013年第23期95-99,共5页 Computer Engineering and Applications
基金 江西省自然科学基金(No.0105100900100012)
关键词 体育视频 最小二乘支持向量机 分器设计 特征提取 证据理论 sports video least squares support vector machine classifier design feature extraction evidence theory
  • 相关文献

参考文献15

  • 1张龙飞,曹元大,周艺华,李剑.基于支持向量机元分类器的体育视频分类[J].北京理工大学学报,2006,26(1):41-44. 被引量:11
  • 2宋刚,肖国强,代毅,李占闯.基于视频区域特征及HMM的体育视频分类研究[J].西南师范大学学报(自然科学版),2010,35(2):180-184. 被引量:11
  • 3Snoek C M, Worring M.Multi modal video indexing: a review of the state-of-the-art[J].Multimedia Tools and Applications, 2005, 25( 1) : 5-35.
  • 4Yu X G, Tian Q, Kong W W.A novel ball detection frame?work for real soccer video[C]//ICME 2003.Baltimore, Wash?ington DC: The Computer Society, 2003: 265-268.
  • 5Zhou W S, Vellaikal A,Kuo CJ.Rule-based video classifica?tion system for basketball video indexing[C].IACM Multi?media Workshops, 2000: 2 13-216.
  • 6Ma Y F, Zhang HJ.Motion pattern based video classifica?tion and retrieval[J].EURASIPJournal on Applied Signal Processing, 2003 (2) : 199-208.
  • 7Kalaiselvi M, Palanivel S.A novel block intensity compari?son code for video classification and retrieval[J].Expert Sys?tems with Applications, 2009,36: 6415-6420.
  • 8Liu 1, Tong X F, Li W L, et al.Automatic player detection, labeling and tracking in broadcast soccer video[l].Pattern Recognition Letters, 2009,30: 103-113.
  • 9Luo Y.Object-based analysis and interpretation of human motion in sports video sequences by dynamic Bayesian net?works[J].Computer Vision and Image Understanding, 2003, 92: 196-216.
  • 10Li Y X, Tan C L.Contextual post processing based on the confusion matrix in offline handwritten Chinese script recog?nition[l].Patten Recognition, 2004,37: 1901-1912.

二级参考文献36

共引文献33

同被引文献83

引证文献9

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部