期刊文献+

深度信息辅助的均值漂移目标跟踪算法 被引量:6

Mean Shift object tracking algorithm assisted by depth cues
下载PDF
导出
摘要 参考目标模型中混入的背景噪声会弱化目标特征的描述,导致目标跟踪定位误差。为减少误差,依据目标与背景处于不同深度平面的特点,提出了基于深度信息辅助的和改进的背景加权直方图的Mean Shift跟踪算法,能够有效削弱核窗口中的背景干扰信息,突出目标的颜色特征信息,并适时自适应更新核带宽,减少因目标尺寸变小时引入较多的背景干扰信息。实验结果表明该算法迭代次数更少,具有良好的跟踪定精度。 The background noise in the candidate object model diminishes the object color characteristic, and induces localiza- tion error. To reduce the error, according to the discriminative depth level between the object' s and the background' s, a Mean Shift algorithm based on depth cues assisted and corrected background-weighted histogram is proposed. The proposed algorithm can sufficiently weaken the background noisy interference in the kernel window, enhance the object' s color feature information, and update the kernel size adaptively in due course to reduce the distractive information in the background as the object size becomes small. Experimental result shows the proposed algorithm has fewer iteration number and good localization precision of tracking.
出处 《计算机工程与应用》 CSCD 2013年第23期177-180,238,共5页 Computer Engineering and Applications
基金 宁波市科技局自然科学基金(No.2010A610109)
关键词 深度信息 均值漂移 带宽自适应 颜色直方图 depth cues Mean Shift adaptive kernel bandwidth color histogram
  • 相关文献

参考文献17

  • 1Georgescu B0 Shimshoni l,Meer P.Mean shift based cluster- ing in high dimensions:a texture classification example[C]// 1EEE International Conference on Computer Vision,2003,2: 456-463.
  • 2Comaniciu D,Meer P.Mean shift:a robust approach toward feature space analysis[J].IEEE Trans on Pattern Anal Mach Intell, 2002,24 (5) : 603-619.
  • 3Collins R.Mean shift blob tracking through scale space[C]// IEEE Conference on Computer Vision and Pattern Recogni- tion, 2003,2 : 234-240.
  • 4Comaniciu D, Ramesh V, Meet P.Kemel-based object tracking[J]. IEEE Trans on Pattern Anal Mach Intell,2003,25(5):564-577.
  • 5Cheng Y.Mean shift, mode seeking, and clustering[J].IEEE Trans on Pattern Anal Mach Intell,1995,17(8):790-799.
  • 6郑玉凤,马秀荣,赵晓琳,王新闯,郭亲弟.基于颜色和边缘特征的均值迁移目标跟踪算法[J].光电子.激光,2011,22(8):1231-1235. 被引量:23
  • 7李小和,张太镒,沈晓东,孙建成.基于加权空间直方图的均值漂移目标跟踪[J].光电子.激光,2010,21(5):767-771. 被引量:9
  • 8Ning Jifeng, Zhang Lei, Zhang D, et al.Robust mean shift tracking with corrected background-weighted histogram[J]. lET Computer Vision,2010.
  • 9陈建军,安国成,张索非,吴镇扬.基于直方图插值的均值移动小尺寸目标跟踪算法[J].电子与信息学报,2010,32(9):2119-2125. 被引量:5
  • 10Hart Ju, Ma Kaikuang.Fuzzy color histogram and its use in color image retrieval[J].IEEE Transactions on Image Processing, 2002,11 (8) : 944-952.

二级参考文献42

  • 1胡波,陈恳,徐建瑜,张云.基于Kalman预测和Mean-shift算法的视频目标跟踪[J].光电子.激光,2009,20(11):1517-1522. 被引量:22
  • 2彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 3王维雅,丁雪梅,黄向东,谭久彬,李海英.一种小目标快速识别与跟踪方法[J].光电子.激光,2007,18(1):121-124. 被引量:14
  • 4Comaniciu D, Meer P. Mean shift: a robust approach to feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 5Comaniciu D, Ramesh, V,Meer P Meer. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 6Collins R T. Mean-shift blob tracking through scale space[A]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. 2003. 234-240.
  • 7Maggio E,Cavallaro A. Multi-part target representation for color tracking[A]. IEEE International Conference on Image Processing[C]. 2005. 729-732.
  • 8Birchfield, S T, Rangarajan, S. Spatiograms versus histograms for region-based tracking[A]. IEEE Conference on Computer Vision and Pattern Recognition[C]. 2005. 1158-1136.
  • 9Hu J S,Chung W J, Wang J J. A spatial-color mean-shift object tracking algorithm with scale and orientation estimation[J].Pattern Recognition Letters, 2008,29 ( 16 ) : 2165-2173.
  • 10Conaire C O, Connor, N E, Smeaton A F. An improved spatio- gram similarity measure for robust object Iocalization[A]. IEEE International Conference on Acoustics, Speech, and Signal Processing[C]. 2007. 1069-1072.

共引文献44

同被引文献43

  • 1郝志成,朱明,刘微.复杂背景下目标的快速提取与跟踪[J].吉林大学学报(工学版),2006,36(2):259-263. 被引量:15
  • 2宋野,齐志泉,王来生.多示例在线学习方法在遮挡目标跟踪中的应用[J].中南大学学报:自然科学版,2011,42(1):666-671.
  • 3Yilmaz A, Javed O, Shah M. Object tracking: A survey [J]. ACM Computing Surveys, 2006, 38(4) : 13-20.
  • 4Ross D, Lim J, Lin Rs, et al. Incremental learning for ro- bust visual tracking[J].International Journal of Computer Vision, 2008, 77(1 ): 125-141.
  • 5Leichter I, Lindenbaum M, Rivlin E. Mean shift tracking with multiple references color histograms [ J ]. Computer Vi- sion and Image Understanding, 2010, 114, (3) :400-408.
  • 6Leichter I. Mean shift trackers with cross-bin metrics [ J ]. IEEE, Transactions on Pattern Analysis and Machine Intel- ligence, 2012, 34(4) :695-706.
  • 7Li X, Zhang T, Shen X, et al. Object tracking using an a- daptive Kalman filter combined with mean shift [ J ]. Opti- cal Engineering, 2010, 49 (2) : 20503-20506.
  • 8Yang Hanxuan,Zheng Feng,Wang Liang,et al.Recent advances and trends in visual tracking:a review[J].Neurocomputing,2011,74(18):3823-3831.
  • 9Ning Jifeng,Zhang Lei,Zhang David,et al.Robust mean shift tracking with corrected background-weighted histogram[J].IET Computer Vision,2012,6(1):62-69.
  • 10Leichter I,Lindenbaum M,Rivlin E.Mean shift tracking with multiple references color histograms[J].Computer Vision and Image Understanding,2010,114(3):400-408.

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部