期刊文献+

动态环境中的多机器人协同搬运 被引量:1

Multi-robot cooperative carrying in dynamic environment
下载PDF
导出
摘要 在多机器人协同搬运过程中,针对传统的强化学习算法仅使用数值分析却忽略了推理环节的问题,将多机器人的独立强化学习与"信念-愿望-意向"(BDI)模型相结合,使得多机器人系统拥有了逻辑推理能力,并且,采用距离最近原则将离障碍物最近的机器人作为主机器人,并指挥从机器人运动,提出随多机器人系统位置及最近障碍物位置变化的评价函数,同时将其与基于强化学习的行为权重结合运用,在多机器人通过与环境不断交互中,使行为权重逐渐趋向最佳。仿真实验表明,该方法可行,能够成功实现协同搬运过程。 In the multi-robot cooperative carrying process, traditional reinforcement learning only uses numerical analysis and ignored reasoning approach. To solve this problem, independence reinforcement learning for multi-robot combines with Belief-Desire-Intention (BDI) model, which makes reinforcement learning link logical reasoning capabilities. And the distance nearest principle is employed which means that the nearest robot ranged from obstacles is the leader robot to control other robots move. Evaluation function which changes with the location of multi-robot and the barriers is proposed, and it combines with the behavior weight based on reinforcement learning which becomes more and more optimized through constantly interacting with the environment. Simulation results show that this method is feasible, and the cooperative carrying process can be successfully achieved.
作者 曹洁 朱宁宁
出处 《计算机工程与应用》 CSCD 2013年第23期252-256,共5页 Computer Engineering and Applications
关键词 多机器人 强化学习 协同搬运 避障 multi-robot reinforcement learning cooperative carrying obstacle avoidance
  • 相关文献

参考文献9

  • 1Bauer A, Wollherr D, Buss M.Human-robot collaboration: a survey[J].Internationa[Journal of Humanoid Robotics, 2008, 5(1) :47-66.
  • 2Jan G E, Chang K Y, Parberry LOptimal path planning for mobile robot navigation[J].IEEE-ASME Transactions on Mechatronics, 2008, 13 (4) : 451-460.
  • 3Busoniu L,Babuska R,De Schutter B.A comprehensive sur?vey of multiagent reinforcement learning[J].IEEE Transac?tions on Systems,Man and Cybernetics ,2008 ,38(2): 156-172.
  • 4Hwang K S,Ko Y C,Alouini M S.Performance analysis of incremental opportunistic relaying over identically and non?identically distributed cooperative paths[J].IEEE Trans on Wireless Commun, 2009,8 (4) : 1953-1961.
  • 5朴松昊,孙立宁,钟秋波,黄庆成.动态环境下的多智能体机器人协作模型[J].华中科技大学学报(自然科学版),2008,36(S1):39-41. 被引量:6
  • 6樊建,郑昌陆,费敏锐,高志年.基于角色变换和强化学习的多机器人协同仿真[J].系统仿真学报,2009,21(21):6964-6967. 被引量:1
  • 7颜振亚,郑宝玉,林志伟.无线传感器网络中机会协作传输及其性能研究[J].电子与信息学报,2009,31(1):215-218. 被引量:5
  • 8Gosavi A.Reinforcement learning: a tutorial survey and recent advances[J].INFORMSJournal on Computing, 2009, 21 (2): 178-192.
  • 9Juang C F, Hsu C H.Reinforcement interval type-2 fuzzy controller design by online rule generation and Q-value-aided ant colony optimization[J].IEEE Trans on Systems, Man and Cybernetics Part B,2009,39(6): 1528-1542.

二级参考文献18

  • 1段勇,刘兴刚,徐心和.基于强化学习的机器人模糊控制系统设计[J].系统仿真学报,2006,18(6):1597-1600. 被引量:4
  • 2Sendonaris A, Erkip E, and Aazhang B. Increasing uplink capacity via user cooperation diversity. IEEE International Syrup. On Information Theory. 1998(8). Cambridge MA USA 16-21 Aug 1998: 156.
  • 3Sendonaris A, Erkip E, and Aazhang B. User cooperation diversity-part i: System description. IEEE Trans. on Communications, 2003, 51(11): 1927-1938.
  • 4Sendonaris A, Erkip E, and Aazhang B. User cooperation diversity-part ii: Implementation and performance analysis. IEEE Trans. on Communications, 2003, 51(11): 1939-1948.
  • 5Laneman J N, Tse D N C, and Wornell G W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Trans. on Information Theory, 2004, 50(12): 3062-3080.
  • 6Hunter T E, Sanayei S, and Nosratinia A. Outage analysis of coded cooperation. IEEE Trans. on Information Theory, 2006, 52(2): 375-391.
  • 7Mukkavilli K K, et al.. On beamforming with finite rate feedback in multiple antenna systems. IEEE Trans. on Information Theory, 2003, 49(10): 2562-2579.
  • 8R Knopp and Humblet P A. Information capacity and power control in single cell multi-user communications. ICCC'95. Washington USA, June 18-22 1995: 331-335.
  • 9Gunduz D and Erkip E, Opportunistic cooperation and power control strategies for delay-limited capacity. CISS 2005. Baltimore, March 16-18 2005.
  • 10Yang J and Brown III D R. The effect of channel state information on optimum energy allocation and energy efficient of cooperative wireless transmission systems. CISS 2006. Princeton USA, March 22-24 2006: 1044-1049.

共引文献9

同被引文献14

  • 1ZHAO Zhi - gang, LU Tian - sheng. Dynamics Analysis of Close -coupling Mnhiple Helicopters System [ J ]. Chinese Journal of Aeronautics (S1000 - 9361 ). 2008,21 ( 1 ) :71 - 78.
  • 2C R Theodore, M B Tischler, J D Colboume. Rapid frequency - domain modeling methods for unmanned aerial vehicle flight control applications[J]. Journal of Aircraft, 2004,41 (4) :735 -743.
  • 3Z L Wang, T Huaglory, P Jiang. A framework for coordination in multi -robot systems[C]. Proceedings of IEEE International Con- ference on Industrial Informatics, 2003.
  • 4Markus Bernard, Kinstantin Kondak, Gunter Hommel. A Slung Load Transportation system Based on Small Size Helicopters [ C ]. Proceedings of the 8th International Workshop on Autonomous Sys- tems - Self - Organization, management, and Control, 2008, Shanghai, China. Soringer. 2008:49 -61.
  • 5田磊.多机协调吊装平台控制系统与研究[D].上海交通大学.2008.
  • 6I Maza, K Kondak, M Bernard, A Ollero. Multi - UAV Coopera- tion and Control for Load Transportation and Deployment [ J ]. Journal of Intelligent and Robotic Systems (S0921 -0296 ), 2010,57( 1 ) :417 -449.
  • 7赵志刚,吕恬生.多机器人协同吊运系统的协调动态载荷分配[J].机器人,2012,34(1):114-119. 被引量:12
  • 8刘长安,周杰,郑贵林.机载稳定平台随动回路控制优化仿真研究[J].计算机仿真,2012,29(6):63-66. 被引量:4
  • 9赵志刚,吕恬生.多无人直升机吊运系统运动学与稳定性的仿真[J].系统仿真学报,2013,25(4):790-794. 被引量:11
  • 10么立双,苏丽颖,李小鹏.多机器人系统任务分配方式的研究与发展[J].制造业自动化,2013,35(10):21-24. 被引量:5

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部