期刊文献+

机构自由度公式的统一形式及其物理内涵 被引量:3

General form and Physical Meaning of the DOF Formula
下载PDF
导出
摘要 由于并联机器人机构的发展,最近十多年,提出了6种新的主要的机构自由度(DOF)公式。在简述这6种公式的结构与特点的基础上给出了这些公式的统一形式及其物理意义,以及DOF公式取得进展的原因;对基于约束螺旋系的统一形式的DOF公式,提出了DOF计算方法的改进建议,并给出两个实例;而基于运动分析的统一形式的DOF公式,只适用于不含非独立运动元素的机构,仅是具有一般性的基于方位特征集的DOF公式的特例。 Along with the development of robot mechanism research,6 new DOF formulas have been proposed in the last decade.After analyzing their structures and characteristics,a Unified form that is able to cover all these 6 formulas is given and the corresponding physical meaning is discussed in this paper.For the uniform DOF formula based on constraint screw system,suggestions for improving the DOF calculation is proposed and 2 examples are introduced for illustration purpose.On the other hand,the uniform DOF formula based on kinematic analysis is not applicable to mechanism containing non-independent motion element and is only a special case of the general DOF formula based on POC set.
出处 《常州大学学报(自然科学版)》 CAS 2013年第4期1-8,共8页 Journal of Changzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(51075045 51375062)
关键词 并联机构 拓扑结构 自由度 方位特征 约束分析 运动分析 parallel mechanism topological structure degree of freedom (DOF) position and orientation characteristics (POC) constraint analysis kinematic analysis
  • 相关文献

参考文献19

  • 1Gogu, Grigore. Mobility of mechanisms: a critical review [J] .Mechanism and Machine Theory, 2005, 40 (9).. 1068- 1097.
  • 2Moroskine Y F. General analysis of the theory of mechanisms [M] . Moscow.. Akad. Nauk, SSSR, 1954.
  • 3Kutzbach K. Meehanische leitungsverzweigung, ihre gesetze und anwendungen [J] . Maschinenbau, 1929 (8) : 710 - 716.
  • 4Zhang Q X. Study on structural theory of spatial mechanisms [J] . Chinese Journal of Mechanical Engineering, 1962, 9 (1): 7 - 32.
  • 5Freudenstein F, Alizade R. On the degree - of - freedom of mechanisms with variable general constraint [C] // Fourth World Congress on the Theory of Machines and Mechanisms. London: Mech Eng Publ Ltd, 1975.. 51 - 56.
  • 6Dai J S, Huang Z, Lipkin H. Mobility of overeonstrained paral- lel mechanisms [J] . ASME Journal of Mechanical Design, 2005, 128; 220- 229.
  • 7Li Q C, Huang Z. Mobility analysis of a novel 3 - 5R parallel mechanism family [J] . ASME Journal of Mechanical Design, 2004, 125: 79-82.
  • 8黄真,刘婧芳,李艳文.论机构自由度·寻找了150年的自由度通用公式[M].北京:科学出版社,2011.
  • 9Kong X W, Gosselin C M. Mobility analysis of parallel mecha- nisms based on screw theory and the concept of equivalent serial kinematic chain [C] //Proc. of the 2005 ASME Design Engi- neering Technical Conf. ~ Computers and Information in Engi- neering Conf. New York: American Society of Mechanical En- gineers, 2005: 911- 920.
  • 10Gogu G. Mobility and spatiality of parallel robots revisited via theory of linear transformations [J].European J of Mechanics A/Solid, 2005, 24.. 690- 711.

共引文献19

同被引文献62

  • 1ZHANG YiTong & MU DeJun Mechanical Engineering College of Yanshan University,Qinhuangdao 066004,China.New concept and new theory of mobility calculation for multi-loop mechanisms[J].Science China(Technological Sciences),2010,53(6):1598-1604. 被引量:12
  • 2黄真,夏平.包括Bennett的一些反常机构的自由度分析(英文)[J].燕山大学学报,2006,30(1):1-9. 被引量:6
  • 3黄真,赵永生,赵铁石.高等空问机构学[M].北京:高等教育出版社,2006.
  • 4杨廷力,刘安心,罗玉峰,等.机器人机构拓扑结构设计[M].北京:科学出版社,2012.
  • 5黄真,刘靖芳,李艳文.论机构自由度-寻找了150年的自由度通用公式[M].北京:科学出版社,2011.
  • 6IONESCU T Gt Terminology for mechanisms and machine science[J]. Mech. Mach. Theory, 2003, 38: 597-601.
  • 7GOGU CL Mobility of mechanisms: A critical review[J]. Mech. Mach. Theory, 2005, 40: 1068-1097.
  • 8MOROSKINE Y F. General analysis of the theory of mechanisms[M]. Moscow: Akad. Nauk, SSSR, 1954.
  • 9KUTZBACH K. Mechanische Leitungsverzweigung, ihre gesetze und anwendungen[J]. Maschinenbau, 1929, 8: 710-716.
  • 10KUTZBACH K. Mechanical manifold, its laws and applieationg[J]. Mechanical Engineering, 1929, 8: 710-716.

引证文献3

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部