期刊文献+

基于系统特性盲辨识的齿轮箱故障诊断

Fault Diagnosis of Gearbox based on System Characteristic Blind Identification
原文传递
导出
摘要 盲系统辨识是仅由输出数据来获得系统特性函数的一种信号处理方法。系统特性只与自身的结构相关,一种工况就对应着一种特定的系统特性。将系统结构及工况两者结合分析,可有效应用于齿轮箱的故障诊断。首先,利用独立分量分析对获得的的信号进行预处理,提取出包含故障频率的信号作为系统模型的响应信号。其次,高阶累积量具有消除和衰减高斯噪声的特性,使用高阶累积量构建时间序列模型。最终,依据模型的系数计算得到的ARMA双谱定性分析,用量子自组织特征映射网络给出定量的判据。实验结果表明,此方法对齿轮箱故障的存在和故障类型的诊断,可以提供一些有价值的结论。 Blind system identification is a signal processing technology, which obtains the function of system characteristics from its output data only. The system characteristics are associated with its own structure, per operating mode corresponding to a particular working state. Gearbox fault diagnosis can be conducted by combining the system structure and working condition. Firstly, using independent component analysis to preprocess the output data, the fault frequency of signal as the responding signal of a system model is extracted. Secondly, the time series model is built by using high order cumulants of eliminating and attenuating characteristics of Gaussian noise. Finally, the ARMA bis- pectrum qualitatively analysis is obtained according to the coefficients of the model. In the meanwhile, the quantitative criteria is obtained by using quantum self- organizing feature map neural network. The results show that, the method can provide some valuable conclusions for presence and type of the fault diagnosis of the gearbox
出处 《机械传动》 CSCD 北大核心 2013年第11期104-109,121,共7页 Journal of Mechanical Transmission
基金 山西省自然科学基金项目(2009011026-1)
关键词 系统特性 盲辨识 高阶累计量 故障诊断 量子自组织特征映射网络 System characteristic Blind identification High order cumulant Fault diagnosis Quantum self organizing feature map neural network
  • 相关文献

参考文献10

  • 1Li Zhixiong, Yah Xinping, Yuan Chengqing, et al. Virtual prototype and experimental researeh on gear multi - fault diagnosis using wavelet autore- gressive model and principal component analysis method [J]. Mechanical Systems and Si gnal Prcessing, 2011,25 ( 7 ) : 2589 - 2607.
  • 2高永生,唐力伟,王建华,金海薇.基于系统特性的齿轮箱故障诊断[J].煤矿机械,2006,27(1):164-166. 被引量:2
  • 3LI Chen, Wang Xinlong, Tao Zhiyong, et al. Extraction of time varying in- formation from noisy signals: An approach based on the empirical mode decomposition[ J ]. Mechanical Systems and Signal Processing, 2011, (3):812-820.
  • 4A. Albarbar, F. Gu, A. Ball. Diesel engine fuel injection monitoring us- ing acoustic measurements and independent component analysis[ J]. Mea- surement 2010,43(10) : 1376 - 1386.
  • 5Huang Jinying, Bi Shihua, Pan ttongxia,et al. The Research of Higher- order Cumulant Spectrum for Vibralion Signals of Gearbox: Proceedings of the 2006 IEEE International Conference on lnformalion Acquisition, Wei- hai, Shandong, August 20 - 23. 2006 [ C ]. Piscataway: IEEE press,2006: 1395 - 1399.
  • 6Fu Lihui, Li Hui, Wang Yaning. Application of Bi - cepstrum analysis to gear fault detection and diagnosis:2009 International Conference on Mea- suring Technology and Mechatronics Automation, Hunan, April 11 - 12, 2009 [ C ]. Piscataway: IEEE press, 2009 : 590 - 593.
  • 7李志农,丁启全,吴昭同,冯长建,严拱标.盲系统辨识与故障诊断[J].浙江大学学报(工学版),2003,37(2):215-220. 被引量:4
  • 8Tan Hongzhou, Chow T W.S. Blind and Total Identification of ARMA Models in Higher Order Cumulants Domain[J]. IEEE Transaction on In- dustrial Electronics. 1999,46(6) : 1233 - 1243.
  • 9李翠萍,谢红卫.基于高阶累积量方法的非高斯非最小相位ARMA模型辨识[J].上海大学学报(自然科学版),2001,7(5):438-441. 被引量:5
  • 10Xie Guangjun, Fan Haiqiu, Cao Licheng. A quantum neural computa- tional network model [ J ]. Journal of Fudan University: Natural Science, 2004,43(5) :700 - 703.

二级参考文献15

  • 1Chow T W S,IEEE Proc Vis Image Signal Process,2000年,147卷,2期,139页
  • 2Li Wei,IEEE Trans Signal Processing,2000年,48卷,4期,1144页
  • 3张贤达,时间序列分析.高价统计量方法,1996年
  • 4Zhang X D,IEEE Trans Signal Processing,1994年,42卷,2854页
  • 5HUA Ying-bo, ABED-MERAIM K, WAX M. Blind system identification using minimum noise subspace[J]. Signal Processing, IEEE Transactions on, 1997,45(3):770-773.
  • 6ABED-MERAIM K, HUA Y, BELOUCHRANI A. Minimum noise subspace: concepts and applications Information[J]. Communications and Signal Processing, 1997,1(11):118-121.
  • 7CHOW Tommy W S, TAN Hong-zhou. HOS-based nonparametric and parametric methodologies for machine fault detection[J]. IEEE Transactions on Industrial Electronics(IE), 2000,47(5):1051-1059.
  • 8HUA Y,WAX M. Strict identifiability of multiple FIR channels driven by an unknown arbitrary sequence[J]. IEEE Trans Signal Processing, 1996,44:756-759.
  • 9ABED-MERAIM K, QIU Wan-zhi, HUA Ying-bo. Blind system identification[J]. Proceedings of the IEEE, 1998,8(8):1310-1322.
  • 10TAN Hong-zhou, CHOW T W S. Blind and total identification of ARMA mode in higher order cumulants domain[J]. Industrial Electronics, IEEE Transactions on, 1999,46(6):1233-1240.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部