期刊文献+

互联网中路由级和IP级拓扑分形特征分析 被引量:3

Analysis of fractal characteristic of internet router-level and IP-level topology
下载PDF
导出
摘要 首先使用粗粒度重整化方法对互联网IPv4路由级拓扑和IPv6 IP级拓扑进行处理,得出度分布幂指数不随粗粒度化测量尺度变化的特性;其次,利用分形理论中分布函数的方法计算互联网在不同维度下的分形维数,探索互联网度分布的分形特征;最后通过对CAIDA数据源的数据分析,研究了IP级数据在时间演化上的分形特征,并得出相应的结论。研究结论能够为互联网结构特性研究提供一定的理论基础。 The preliminary works have found that fractal theory has greater leverage in the analysis area of the Intemet architecture. So firstly the method of the renormalization of coarse-grain was used to deal with the IPV4 and IPV6 router level topology of the internet, and it was found that the characteristics of power index of degree distribution didn't change with measurement scales of coarse grain. Secondly, the it was found that method of the fractal distribution function was used to calculate the fractal dimension of different dimensions of intemet and explore the fractal characteristics of degree distribution of internet. Lastly, through the analysis of the CAIDA data source, the fractal characteristics of IP-level data were studied on during the time evolution, and then the appropriate conclusions were got. The research conclusions of this article can give the theoretical basis to the study on structural characteristics of the intemet.
作者 关世杰 赵海
出处 《通信学报》 EI CSCD 北大核心 2013年第11期162-170,共9页 Journal on Communications
基金 国家自然科学基金资助项目(60973022)~~
关键词 复杂网络 分形 重整化算法 k-core分解 complex network fractal degree renormalization algorithm k-core decomposition
  • 相关文献

参考文献13

  • 1FALOUTSOS M, FALOUTSOS P, FALOUTSOS C. On power-law relationships of the internet topology[J]. ACM SIGCOMM Computer Communication Review, 1999, 29(4): 251-262.
  • 2ALBERT R, JEONG H, BARABASI A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794): 378-382.
  • 3郭虹,杨白薇,兰巨龙,刘洛琨.AS级Internet拓扑层次性分析与建模[J].通信学报,2011,32(9):182-190. 被引量:5
  • 4杨波,赵海,张君,孙华丽.AS级Internet拓扑突变性分析[J].东北大学学报(自然科学版),2011,32(3):376-379. 被引量:2
  • 5张君,赵海,杨波,贾思媛.AS级Internet网络拓扑的中心性测量[J].东北大学学报(自然科学版),2012,33(3):340-343. 被引量:2
  • 6SONG C, HAVLIN S, MAKSE H A. Self-similarity of complex networks[J]. Nature, 2005, 433(7024): 392-395.
  • 7SONG C, GALLOS L K, HAVLIN S, et al. How to calculate the fractal dimension of a complex network: the box covering algorithm[J].Journal of Statistical Mechanics: Theory and Experiment, 2007,2007(03):P03006.
  • 8KIM D H, NOH J D, JEONG H. Scale-free trees: the skeletons of complex networks[J]. Physical Review E, 2004, 70(4):046126.
  • 9GOH K I, SALVI G, KAHNG B, et al. Skeleton and fractal scaling in complex networks[J]. Physical Review Letters, 2006, 96(1): 018701.
  • 10KIM J S, GOH K I, SALVI G, et al. Fractality in complex networks: critical and supercritical skeletons[J]. Physical Review E, 2007, 75(1):016110.

二级参考文献38

  • 1张国强,张国清.Internet网络的关联性研究[J].软件学报,2006,17(3):490-497. 被引量:17
  • 2张国强,张国清.互联网AS级拓扑的局部聚团现象研究[J].复杂系统与复杂性科学,2006,3(3):34-41. 被引量:7
  • 3Thorn R. Stability structure at morphogenese [ M ]. New York: Wiley-Interscience, 1972.
  • 4Zeeman E C. Catastrophe theory[J]. Scientific American,1976,234(4):65 - 83.
  • 5Newman M E J. The structure and function of complex networks[J]. SIAMReview, 2003,45:167-256.
  • 6张文波.Intemet宏观拓扑结构的生命特征研究[D].沈阳:东北大学,2005.
  • 7Mahadevan P, Hubble C, Krioukov, D, et al. Orbis: rescaling degree correlations to generate annotated lnternet topologiesIJl. SIC-COMM Cnpu Cnmmun Rev , 2007,37 (4) :325-336.
  • 8Gonen M, in Jellyfish 2841 Ron D, W graphs[J]. einsberg U, et al. Finding a dense-core ComputNetw, 2008,52(15):2831-2841.
  • 9ZEGURA E W, CALVERT K L, DONAHOO M L. A quantitative comparison of graph-based models for Intemet topology[J]. IEEE/ACM Transactions on Networking, 1997, 5(6): 770-783.
  • 10LI X, CHEN G A. Local-world evolving network model[J]. Phys A, 2003, 328: 274-286.

共引文献6

同被引文献21

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部