期刊文献+

基于主动学习的高光谱图像分类方法 被引量:2

Hyperspectral image classification based on active learning
下载PDF
导出
摘要 高光谱图像监督分类中,为了避免休斯效应需要大量的训练样本,但在实际应用中对样本进行标注成本非常高,因此,得到高质量的训练样本显得十分重要。提出一种基于主动学习的高光谱图像分类方法,通过对区域关注度的统计,有效地结合图像光谱和空间特性,基于主动学习方法获取信息量较大的训练样本,从而较大幅度提高了分类的精确度。实验结果表明,所提算法比传统的随机取样监督分类法和主动学习方法在分类精确度上有较大的优势。 Most supervised classification methods require large training samples to avoid the well-known Hughes effect. However, labeling samples is often very expensive in actual world applications. In order to reduce the number of training samples, high-quality training samples are extremely important. A hyperspectral image classification based on active learning was proposed. It provided a new calculation method for concerning region attention degree to combine spectral and spatial characteristics of the image effectively, and used active learning method to obtain training set with the most abundant information and improved the classification accuracy ultimately. The experimental results show that the proposed method performs particularly well for the classification of hyperspectral images, when compared to random sampling supervised classification method and active learning approaches.
出处 《计算机应用》 CSCD 北大核心 2013年第12期3441-3443,3448,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61173118) 中央高校基本科研业务费资助项目
关键词 关注度 支持向量机 期望最大化 主动学习 高光谱遥感图像 attention degree Support Vector Machine (SVM) Expectation-Maximization (EM) Active Learning(AL) hyperspectral remote sensing image
  • 相关文献

参考文献9

  • 1LANDGREBE D A. Signal theory methods in multispectral remote sensing[M] . New York: Wiley, 2003.
  • 2MOUSTAKIDIS S, MALLINIS G, KOUTSIAS N, et al. SVM-based fuzzy decision trees for classification of high spatial resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50( 1): 149 -169.
  • 3BAIJ, XIANG 5 M, PAN C H. A graph-based classification meth?od for hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51 (2): 803 - 817.
  • 4LI C-H, KUO B-C, LIN C-T, et al. A spatial contextual support vector machine for remotely sensed image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50( 3): 784 -799.
  • 5MA ULIK U, SAHA I. Modified differential evolution based fuzzy clustering for pixel classification in remote sensing imagery[J]. Pat?tern Recognition, 2009,42(9): 2135 -2149.
  • 6TARABALKA Y, CHANUSSOTJ, BENEDlKTSSONJ A. Segmen?tation and classification of hyperspectral images using watershed transformation[J]. Pattern Recognition, 2010, 43 (7): 2367 - 2379.
  • 7TARABALKA Y, BENEDlKTSSONJ A, CHANUSSOTJ. Spectral?spatial classification of hyperspectral imagery based on partitional clustering techniques[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47( 8): 2973 - 2987.
  • 8TUIA D, MUNNOZ-MARlJ, CAMPS-VALLS G. Remote sensing image segmentation by active queries[J]. Pattern Recognition, 2012, 45( 6): 2180 - 2192.
  • 9LIJ, BIOUCAS-DIASJ M, PLAZA A. Spectral spatial classifica?tion of hyperspectral data using loopy belief propagation and active learning[J]. IEEE Transactions on Geoscience and Remote Sens?ing, 2013,51 (2): 844 - 856.

同被引文献14

  • 1PLAZA A, BENEDIKTSSON J A, BOARDMAN J W, et al. Recent advances in techniques for hyperspectral image processing[ J]. Re- mote Sensing of Environment, 2009, 113(1) : 110 - 122.
  • 2YANG H, DU Q, SU H, et al. An efficient method for supervised hyperspectral band selection[ J]. IEEE Geoscience & Remote Sens- ing Letters, 2011, 8(1) : 138 - 142.
  • 3. MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[ J]. IEEE Transactions on Geoscience & Remote Sensing, 2004, 42(8) : 1778 -1790.
  • 4CHEN Y, NASRABADI N M, TRAN T D. Hyperspectral image classification using dictionary-based sparse representation[ J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49( 10): 3973 - 3985.
  • 5SUN X, QU Q, NASRABADI N M, et al. Stnietured priors for sparse-representation-based hyperspectral image classification[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 11 (7): 1235 - 1239.
  • 6LUO M, ZHANG K. A hybrid approach combining extreme learn- ing machine and sparse representation for image classification[ J]. Engineering Applications of Artificial Intelligence, 2014, 27 ( 1 ) : 228 - 235.
  • 7SUN B-Y, WANG C-Y, WANG H-L, et al. A two stage method for hyperspectral image classification[ C] // Proceedings of the 2014 11 th World Congress on Intelligent Control and Automation. Piseat- away: IEEE, 2014:1496 - 1499.
  • 8ZOU J, LI W, HUANG X, et al. Classification of hyperspectral urban data using adaptive simultaneous orthogonal matching pursuit [ J]. Journal of Applied Remote Sensing, 2014, 8 (9) : 5230 - 5237.
  • 9ZHANG H, LI J, HUANG Y, et al. A nonlocal weighted joint sparse representation classification method for hyperspeetral imagery [ J]. IEEE Journal of Selected Topics in Applied Earth Observa- tions & Remote Sensing, 2014, 7(6):2056-2065.
  • 10MAIRAL J, BACH F, PONCE J, et al. Online learning for matrix factorization and sparse coding[ J]. Journal of Machine Learning Research, 2009, 11(1) : 19 -60.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部