摘要
高光谱图像监督分类中,为了避免休斯效应需要大量的训练样本,但在实际应用中对样本进行标注成本非常高,因此,得到高质量的训练样本显得十分重要。提出一种基于主动学习的高光谱图像分类方法,通过对区域关注度的统计,有效地结合图像光谱和空间特性,基于主动学习方法获取信息量较大的训练样本,从而较大幅度提高了分类的精确度。实验结果表明,所提算法比传统的随机取样监督分类法和主动学习方法在分类精确度上有较大的优势。
Most supervised classification methods require large training samples to avoid the well-known Hughes effect. However, labeling samples is often very expensive in actual world applications. In order to reduce the number of training samples, high-quality training samples are extremely important. A hyperspectral image classification based on active learning was proposed. It provided a new calculation method for concerning region attention degree to combine spectral and spatial characteristics of the image effectively, and used active learning method to obtain training set with the most abundant information and improved the classification accuracy ultimately. The experimental results show that the proposed method performs particularly well for the classification of hyperspectral images, when compared to random sampling supervised classification method and active learning approaches.
出处
《计算机应用》
CSCD
北大核心
2013年第12期3441-3443,3448,共4页
journal of Computer Applications
基金
国家自然科学基金资助项目(61173118)
中央高校基本科研业务费资助项目
关键词
关注度
支持向量机
期望最大化
主动学习
高光谱遥感图像
attention degree
Support Vector Machine (SVM)
Expectation-Maximization (EM)
Active Learning(AL)
hyperspectral remote sensing image