期刊文献+

基于毗连的几乎最优弹性布尔函数的构造 被引量:1

Construction of almost optimal resilient Boolean functions via concatenation
下载PDF
导出
摘要 近年来,几乎最优弹性布尔函数的研究应用快速发展,提高几乎最优函数的非线性度有着重要的意义。针对一种性能较好的几乎最优函数进行分析和改进,结合毗连的构造方法,来构造偶数元几乎最优函数。在保持其弹性和代数次数的前提下,得到非线性度更高的几乎最优函数,使其性能得到一定提高,并给出了一种构造高非线性度弹性布尔函数的构造方法。分析表明,所提出的方案构造方法简单,容易实现,非线性度得到进一步提高,具有m阶弹性,且代数次数保持不变。 In recent years, research of almost optimal resilient Boolean functions develops rapidly, and it is important to improve the nonlinearity degree of almost optimal functions. Analysis and improvement of an almost optimal function with good performance was given, and an almost optimal function with even variables was constructed using concatenating construction method. A nonlinear optimal function with higher nonlinearity was got while maintaining its resilience and algebraic degree, which improved the performance of the function. And the construction method was also given to construct an elastic Boolean function with high nonlinearity. Analysis shows that the proposed construction method is simple and easy to implement, the nonlinearity is improved with m resilience and unchanged algebraic de~'ee.
出处 《计算机应用》 CSCD 北大核心 2013年第12期3503-3505,3510,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61272492 61202492 61103231 61103230)
关键词 密码学 序列密码 布尔函数 弹性函数 非线性度 cryptography steamcipher Boolean function resilient function nonlinearity
  • 相关文献

参考文献15

  • 1OOBBERTIN H. One-to-one highly nonlinear power function on GF(2n)[J]. Applicable Algebra in Engineering, Communication and Computing, 1998, 9( 2) : 139 -152.
  • 2ROTHAUS 0 S. On' Bent' functions[J].Journal of Combinatorial Theory, Series A, 1976,20(3): 300 -305.
  • 3CHARPIN P, KYUREGHYAN G M M. On cubic monomial Bent functions in the class M: a subclass of M[J]. SIAMJournal on Dis?crete Mathematics, 2008,22(2): 650 -665.
  • 4STINSON 0 R. Combinatirial designs: constructions and analysis[M]. Berlin: Springer-Verlag, 2004.
  • 5ZHENG Y L, ZHANG X-M. New results on correlation immune functions[C] / / ICISC 2000: Proceedings of the 3nd International Conference on Information Security and Cryptology, LNCS 2015. Berlin: Springer-Verlag, 2000: 49 - 63.
  • 6ZHANG WeiGuo XIAO GuoZhen.Construction of almost optimal resilient Boolean functions via concatenating Maiorana-McFarland functions[J].Science China(Information Sciences),2011,54(4):909-912. 被引量:7
  • 7YU N Y, GONG G. Constructions of quadratic Bent functions in polynomial forms[J]. IEEE Transactions on Information Theory, 2006,52(7): 3291 -3299.
  • 8CARLET C. On the higher order nonlinearities of several classes of Boolean functions with optimum algebraic immunity[J]. Designs, Codes and Cryptography, 2009, 52( 2) : 303 - 338.
  • 9CHEN Y D. Construnctions of even-variable Boolean functions with optimum algebraic immunity[C] II ICECC 2011: Proceedings of the 2011 International Conference on Electronics, Communications and Control. Piscataway: IEEE, 2011: 1957 -1960.
  • 10CORTOIS N T, PIEPRZYKJ. Cryptanalysis of block ciphers with overdefined systems of equations[C]II ASIACRYIT 2002: Pro?ceedings of the Advances in Cryptology, LNCS 2501. Berlin: Springer-Verlag, 2002: 267 -287.

二级参考文献9

  • 1Rothaus O S. On'bent' functions[ J]. Journal of Combinatolial Theory, Series A, 1976,20(3) : 300 -305.
  • 2Golomb S W, Gong G. Signal Design for Good Correlation for Wireless Communication, Cryptography and Radar [ M ]. Cam-bridge, U K:Cambridge University Press,2005.
  • 3Zhang W G, Xiao G Z. Constructions of almost optimal resilient Boolean functions on large even number of variables[ J]. IEEE. Transactiom on Information Theory, 2009, 55 ( 12 ) : 5822 -5831.
  • 4Dillon J F. Elementary Hadamard Difference Set [ D ]. Mary-land: University of Maryland, College Park, 1974.
  • 5Seberry J, Zhang X M, Zheng Y. Nonlinearly balanced Boolean functions and their propagation characteristics[ A]. Advances in Crypmlogy-CRYFID' 93, Lecture Notes in Computer Science [ C]. Berlin, Germany: Springer-Verlag, 1994.49 -60.
  • 6Zhang W G,Xiao G Z.Constructions of almost optimal resilient Boolean functions on large even number of variables[].IEEE Transactions on Information Theory.2009
  • 7Siegenthaler T.Correlation-immunity of nonlinear combining functions for cryptographic applications[].IEEE Transactions on Information Theory.1984
  • 8G Z Xiao,J L Massey.A spectral characterization of correlation-immune combining functions[].IEEE Transactions on Information Theory.1988
  • 9Rothaus O S.On Bent functions[].Journal of Combinatoral Theory(SerA).1976

共引文献9

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部