期刊文献+

带有交货期窗口和工件可拒绝的单机排序问题

Scheduling a Single Machine with Job Rejection and Due-window Assignment
原文传递
导出
摘要 讨论了带有交货期窗口和工件可拒绝的单机排序问题﹐这一问题是将所有的工件分成两个集合﹐一个是被接受的工件集﹐一个是被拒绝的工件集。假设被接受的每个工件都有一个待定的交货期窗口﹐且所有工件的交货期窗口的大小是相同的﹐如果工件在窗口中完工﹐则不产生任何费用;否则工件提前或延误﹐会产生相应的提前或延误的费用。而对于拒绝工件而言﹐它的费用只与工件有关。这类问题的总费用是2个工件集的费用之和。目标函数是确定被接受工件的最优排序﹐极小化总费用﹐给出了一个动态规划算法﹐并证明了这个问题是多项式时间可解的。 We study a single machine scheduling with job rejection and due-window assignment. The scheduling problem is given by partitioning the jobs into a set of accepted and a set of rejected jobs. We assume that every accepted job has an undetermined due-window and the size of due-window is identical. There is no cost where the job is completed during the due-window, but there is cost where the job is completed prior or after the due-window. The cost of the rejected jobs depends on the rejected jobs. The cost of this problem is the sum cost of two sets jobs. The objective is to determine the optimal sequence of accepted jobs and minimize the total costs. We have provided dynamic programming algorithms, and shown that the problem is solvable in polynomial time.
作者 陈东 赵传立
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期17-21,共5页 Journal of Chongqing Normal University:Natural Science
基金 国家自然科学基金(No.11001117 No.11201439 No.11271341)
关键词 排序 单机 交货期窗口 拒绝工件 接受工件 scheduling single machine due-window rejected job accepted job
  • 相关文献

参考文献12

  • 1Mosheiov G, Sarig A. Scheduling with a common due-win- dow: Polynomially solvable cases [J]. Information Sci- ences,2010,180:1492-1505.
  • 2Mor B, Mosheiv G. Scheduling a maintenance activity and due-window assignment based on common flow allowance [J]. International Journal of Production Economics, 2012, 135: 222-230.
  • 3Liman S D, Panwalkar S S, Thongmee S. Common due win- dow size and location determination in a single machine scheduling problem[J]. Journal of the Operational Research Society, 1998,49 : 1007-1010.
  • 4Shabtay D, Gaspar N, Yedidsion L. A bicriteria approach to scheduling a single machine with job rejection and posi- tional penalties [J]. Journal of Combinatorial Optimization, 2012,23: 395-424.
  • 5Zhang L Q,Lu L F,Ng C T. Optimal algorithms for single machine scheduling with rejection to minimize the makes- pan[J]. International Journal of Production Economics, 2011,130 : 153-158.
  • 6Bartal Y, Leonardi S, Marchetti-Spaccamela A, et al. Multi- processor scheduling with rejection[J]. SIAM Journal onDiscrete Mathematics, 2000,13 : 64-78.
  • 7Cheng Y S, Sun S J. Scheduling linear deteriorating jobs with rejection on a single machine[J]. European Journal of Operational Research, 2009,194 : 18-27.
  • 8Zhang L Q, Lu L F, Yuan J J. Single machine scheduling with release dates and rejection[J]. European Journal of Operational Research, 2009,198 : 975-978.
  • 9Zhang S X,Zhang F. Scheduling with rejection to minimize the total weighted completion time[J]. Journal of Chongqing Normal University: Natural Science,2012,29(5) : 10-12.
  • 10Zhigang CAO,Yuzhong ZHANG.SCHEDULING WITH REJECTION AND NON-IDENTICAL JOB ARRIVALS[J].Journal of Systems Science & Complexity,2007,20(4):529-535. 被引量:7

二级参考文献9

  • 1Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, a. Sgall, and L. Stougie, Multiprocessor scheduling with rejection, SIAM Journal of Discrete Maths, 2000, 13(1): 64-78.
  • 2Y. He and X. Min, On-line uniform machine scheduling with rejection, Computing, 2000, 65(1): 1-12.
  • 3H. Hoogeveen, M. Skutella, and G. J. Woeginger, Preemptive scheduling with rejection, Lecture Notes in Computer Science, 2000, 1879:268-277.
  • 4S. S. Selden, Preemptive multiprocessor scheduling with rejection, Theoretical Computer Science, 2001, 262(1): 437-458.
  • 5D. W. Engels, D. R. Karger, S. G. Kolliopoulos, S. Sengupta, R. N. Uma, and J. Wein, Techniques for scheduling with rejection. Lecture Notes in Computer Science, 1998, 1461: 499-501.
  • 6L. Epstein, J. Noga, and G. J. Woeginger, On-line scheduling of unit time jobs with rejection: minimizing the total completion time. Operations Research Letters, 2002, 30(6): 415-420.
  • 7S. Sengupta, Algorithms and approximation schemes for mimimum lateness/tardiness scheduling with rejection, Lecture Notes in Computer Science, 2003, 2748: 79-90.
  • 8R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling, Annals of Discrete Mathematics, 1979, 5: 287-326.
  • 9G.J. Woeginger, When does a dynamic programming formulation guarantee the exitence of an FPTAS? INFORMS Journal on Computing, 2000, 12(1):57-74.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部