期刊文献+

次梯度法在求解非光滑最优化问题时的计算效果研究(英文) 被引量:4

Numerical Performance of Subgradient Methods in Solving Nonsmooth Optimization Problems
原文传递
导出
摘要 本文研究了次梯度法的一些重要问题。次梯度法是梯度法在非光滑优化中的直接推广。在每一步的迭代中,选取一个负次梯度方向为搜索方向,并以一定的规则设置搜索步长。次梯度法的每一步迭代不一定都下降,但是可以证明,对于非光滑凸优化问题,次梯度法能够保证全局收敛性。次梯度法的搜索步长是预先设置的,步长设置准则包括常值步长准则、有限平方和步长准则和已知全局极小值的步长准则。本文对各种步长准则的收敛性进行了证明。为了验证次梯度法在不同的步长准则下的计算效果,本文应用次梯度法对一系列非光滑最优化问题进行了计算实验,并分析了他们的计算结果。数值实验结果表明,常值步长准则收敛速度慢,精度不高,而且步长的选择困难。而有限平方和步长准则收敛速度更快,也能够达到更高的精度。至于已知全局极小值的步长准则,虽然精度也较高,但是因为需要事先已知凸优化问题的全局极小值,所以这种步长准则的应用范围有限。 The subgradient methods in solving nonsmooth optimization problems are studied in this paper.Firstly,we present a brief review of the available subgradient methods.Then,different sorts of step size rules are introduced and the corresponding convergence is established.Finally,some convex nonsmooth optimization problems are computed to test the numerical performance of provided subgradient methods. Numerical comparisons between different subgradient methods are investigated too.
作者 龙强 李觉友
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期25-30,共6页 Journal of Chongqing Normal University:Natural Science
基金 Scientific and Technoloogical Resarch Program of Chongqing Municipal Education Commission(No.KJ120616)~~
关键词 次梯度法 非光滑最优化问题 步长准则 subgradient methods nonsmooth optimization problem step size rules
  • 相关文献

参考文献7

  • 1Shor N Z,Kiwiel K C, Ruszczynski A, Minimization meth- ods for non-differentiable functions [M]. Berlin: Springer- verlag, 1985.
  • 2Lemarechal C. Nondifferentiable optimization[C]/Nem- hauser G L,Rinnooy Kan A H G,Todd M J. Handbooks in Operations Research and Management Science, Optimiza- tion. Amsterdam, Netherlands : North Holland, 1989.
  • 3Lukan L, Vlek J. Test problems for nonsmooth uncon- strained and linealy constrained optimization[R]. Institute of Computer Science,Academy of Science of the Czech Re- public, 2000.
  • 4Polyak B T. A general method for solving extremal problem [J]. Dokl Akad Mauk SSSR,1967,174:33-36.
  • 5Ermolev Y M. Methods of solution of nonlinear extremal problems[J]. Cybernetics and Systems Analysis, 1966, 2 (2) : 1-14.
  • 6Polyak B T. Subgradient methods: a survey of soviet union research[C]//Lemarechal C, Mifflin R. Nonsmooth Opti- mization. Oxford : Pergamon Press, 1977.
  • 7Polyak B T. Introduction to optimization[M]. New York: Optimization Software Inc Publications Division, 1987.

同被引文献21

  • 1钟玉泉.复变函数论[M].3版.北京:高等教育出版社,2006.22-27.
  • 2Kreutz D K. The complex gradient operator and the CR-calculus[EB/OL].2016-01-10.http://dsp.ucsd.edu/~kreutz/PEI-05%20Support%20Files/complex_derivatives.pdf.
  • 3Wen J Z, Wen X. Fast estimation of sparse doubly spread acoustic channels[J].Journal of the Acoustical Society of America,2012,131(1):303-317.
  • 4Xia Y L, Took C C, Mandic D P. An augmented affine projection algorithm for the filtering of noncircular complex signals[J].Signal Processing,2010,90(6):1788-1799.
  • 5Brandwood D H. A complex gradient operator and its applica-tion in adaptive array theory[J].IEE Proceedings of Communications Radar & Signal Processing,1983,130(1):11-16.
  • 6Mandic D P, Goh S L. Complex valued nonlinear adaptive filters: noncircularity, widely linear and neural models[M]. New York: Wiley,2009:55-68.
  • 7Nesterov Y, Shikkman V. Quasi-monotone subgradient methods for nonsmooth convex minimization[J]. Journal of Optimization Theory and Applications, 2015,165(3):917-940.
  • 8Nesterov Y. Subgradient methods for huge-scale optimization problems[J].Mathematical Programming,2012,146(1/2):275-297.
  • 9Nesterov Y. Primal-dual subgradient methods for convex problems[J].Mathematical Programming,2005,120(1):221-259.
  • 10Katsikis V N, Pappas D, Petralias A. An improved method for the computation of the MoorePenrose inverse matrix[J].Applied Mathematics & Computation,2011,217(23):9828-9834.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部