期刊文献+

具有模糊系数的多目标模糊正项几何规划的解法 被引量:1

A Method for Solving Multi-objective Fuzzy Posynomial Geometric Programming with Fuzzy Coefficients
原文传递
导出
摘要 多目标几何规划是解决一些最优化问题的强有力工具,当问题中的参数为模糊数时,目标值也应该是模糊数。本文提出求解系数是模糊数的多目标模糊正项几何规划的算法,首先利用线性加权的方法将问题转化为单目标模糊正项规划问题,再利用Zadeh的扩张原理与对偶原理将单目标模糊正项规划问题转化为两个普通的正项几何规划。 Multi-objective posynomial geometric programming (MPGP) is a strong tool for solving a type of optimization problem. When the parameters in the problem are fuzzy number, the calculated objective value should be fuzzy number as well. This paper de- velops a solution procedure to solve multi-objective fuzzy posynomial geometric programming (MFPGP) with fuzzy number coeffi-cients. Firstly, MFPGP is transformed to a single objective fuzzy posynomial geometric programming by linear weighted-sum meth-od. Then, by Zadeh' s extension principle and duality theorem, we transform single objective fuzzy posynomial geometric program-ming into a pair of conventional posynomial geometric programming.
作者 周雪刚
出处 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期31-35,共5页 Journal of Chongqing Normal University:Natural Science
基金 广东省自然科学基金博士科研启动基金项目(No.S2013040012506/2013) 广东金融学院科研项目(No.2012RCYJ005/2012)
关键词 多目标模糊正项几何规划 扩张原理 线性加权 对偶原理 Multi-objective fuzzy posynomial geometric programming extension principle linear weighted-sum method dualityprinciple
  • 相关文献

参考文献12

  • 1Duffin R J,Peterson E L, Zener C M. Geometric Program- ming Theory and Applications [M]. New York: Wiley, 1967.
  • 2Cao B Y. Solution and theory of question for a kind of fuzzy positive geometric program[C]//Proc 2nd IFSA Congress. Tokyo : [s. n.],1987,1: 205-208.
  • 3Cao B Y. Fuzzy geometric programming(I)[J]. Fuzzy Sets and Systems, 1993,53 : 135-153.
  • 4Cao B Y. Posynomial geometric programming with L-R fuzzy coefficients [J]. Fuzzy Sets and Systems, 1994, 67: 267-276.
  • 5周雪刚,李培峦.系数是模糊数的模糊正项几何规划的一种解法[J].模糊系统与数学,2009,23(2):144-148. 被引量:2
  • 6胡仁杰,曹炳元.模糊正项几何规划的一种解法[J].广州大学学报(自然科学版),2010,9(3):23-25. 被引量:1
  • 7Liu S T. Geometric programming with fuzzy parameters in engineering optimization[J]. International Journal of Ap- proximate Reasoning, 2007,46 (3) : 484-498.
  • 8Cao B Y. Fuzzy geometric programming[M]. [S. 1. ] : Klu- wer Acadmic Publishers,2002.
  • 9Verma P K. Fuzzy geometric programming with several ob- iective function[J]. Fuzzy Sets and Systems, 1990,35 : 115- 120.
  • 10Biswal M P. Fuzzy programming technique to solve multi objective geometric programming problems[J]. Fuzzy Sets and Systems, 1992,51 : 67-71.

二级参考文献17

  • 1曹炳元.几类不分明多目标几何规划[J].湖南数学年刊,1995,1:99-106.
  • 2Cao B Y. Solution and theory of question for a kind of fuzzy positive geometric program[A]. Proc. of IFSA Congress (Vol. 1) [C]. Tokyo, 1987 : 205-208.
  • 3Cao B Y. Fuzzy geometric programming(I)[J]. Fuzzy Sets and Systems, 1993,53 (2):135-153.
  • 4Verma R. K Fuzzy geometric programming with several objective function[J]. Fuzzy Setsand Systems, 1990,35:115-120.
  • 5Biswal M P. Fuzzy programming technique to solve multiobjective geometric programmingproblems[J]. Fuzzy Sets and Systems, 1992,51 : 67 - 71.
  • 6Fortemps P, Roubens M. Ranking and defuzzilcation methods based on area compensation[J]. Fuzzy Sets and Systems,1996,82:319-330.
  • 7Roubens M. Inequality constraints between fuzzy numbers and their use in mathematical programming[A]. Slowinski R, Teghem J. Stochastic versus fuzzy approachs to multiobjective mathematical programming under uncertainty[C]. Dordrecht : Kluwer Academic Publishers, 1991 : 321-330.
  • 8CAO Bing-yuan.Solution and theory of question for a kind of fuzzy positive geometric program[C] //Proc IFSA Congress,Tokyo,1987,1:205-208.
  • 9CAO Bing-yuan.Fuzzy geometric programming(I)[J].Int Fuzzy Sets and Systems,1993,53:135-153.
  • 10VERMA R K.Fuzzy geometric programming with several objective function[J].Int J Fuzzy Sets and Systems,1990,35:115-120.

共引文献1

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部