摘要
多目标几何规划是解决一些最优化问题的强有力工具,当问题中的参数为模糊数时,目标值也应该是模糊数。本文提出求解系数是模糊数的多目标模糊正项几何规划的算法,首先利用线性加权的方法将问题转化为单目标模糊正项规划问题,再利用Zadeh的扩张原理与对偶原理将单目标模糊正项规划问题转化为两个普通的正项几何规划。
Multi-objective posynomial geometric programming (MPGP) is a strong tool for solving a type of optimization problem. When the parameters in the problem are fuzzy number, the calculated objective value should be fuzzy number as well. This paper de- velops a solution procedure to solve multi-objective fuzzy posynomial geometric programming (MFPGP) with fuzzy number coeffi-cients. Firstly, MFPGP is transformed to a single objective fuzzy posynomial geometric programming by linear weighted-sum meth-od. Then, by Zadeh' s extension principle and duality theorem, we transform single objective fuzzy posynomial geometric program-ming into a pair of conventional posynomial geometric programming.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第6期31-35,共5页
Journal of Chongqing Normal University:Natural Science
基金
广东省自然科学基金博士科研启动基金项目(No.S2013040012506/2013)
广东金融学院科研项目(No.2012RCYJ005/2012)
关键词
多目标模糊正项几何规划
扩张原理
线性加权
对偶原理
Multi-objective fuzzy posynomial geometric programming
extension principle
linear weighted-sum method
dualityprinciple