摘要
采用基于矩阵图集的粗化算法形成粗点集,构造改进的插值算子,结合V型多重网格法和瀑布型多重网格法的算法结构,提出了一种改进的代数多重网格(IAMG)法,并估计了该算法的计算量。将IAMG法运用于求解牛顿算法中线性校正方程,提出了求解非线性椭圆型问题的非精确牛顿代数多重网格(IN-AMG)法。数值实验表明与对比算法相比,IN-AMG法在求解线性校正方程方面的整体计算量更少、计算时间更短。
A new interpolation operator is designed by combining with the coarse grid points, which are given by using the coarsening algorithm based on the graph of the stiffness matrix. An improved algebraic multigrid (IAMG) method is presented for linear equa-tions, by combining with the structure of V-cycle multigrid method and eascadie multigrid method. The calculation of the IAMG al-gorithm is estimated. And the algorithm is used in solving the linear correction equation of Newton algorithm. Then inexact Newton algebraic multigrid (IN-AMG) method is proposed for nonlinear elliptic problem. The numerical experiment shows that the IN-AMG method can decrease amount of calculation and reduce the computation time greatly, compared with the contrast algorithm.
出处
《重庆师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第6期98-102,共5页
Journal of Chongqing Normal University:Natural Science
基金
国家自然科学基金(No.11161014)
云南省科技厅青年项目(No.2012FD054)
红河学院硕博项目(No.XJ1S0925)
关键词
插值算子
代数多重网格法
非精确牛顿代数多重网格法
非线性椭圆问题
interpolation operator
algebraic multigrid method
inexact Newton algebraic multigrid method
nonlinear elliptic problem