期刊文献+

一类依比例依赖的捕食系统的性态分析 被引量:1

Qualitative Analysis for a Ratio-Dependent Predator-Prey System
原文传递
导出
摘要 对一类依比例依赖的时滞捕食系统进行讨论.首先,对系统中解的最终有界性、平衡点的存在性及稳定性进行了分析.进一步,利用微分比较定理讨论了系统的永久持续生存和灭绝,得到了系统的永久持续生存和灭绝的条件. In this paper, we consider a kind of ratio-dependent predator-prey system with delay. Firstly, we analyze not only the boundedness of solutions but also existence and stability of equilibrium. Further, by differential comparison theorem, we establish sufficient conditions, which guarantee permanence and extinction for system.
作者 程艳 董玲珍
出处 《数学的实践与认识》 CSCD 北大核心 2013年第22期143-148,共6页 Mathematics in Practice and Theory
基金 教育部科学技术研究重点项目(210030) 山西省自然科学基金(2008011002-2)
关键词 捕食系统 平衡点 最终有界 局部稳定 持久生存 Predator-prey system equilibrium boundedness local stability permanence
  • 相关文献

参考文献3

  • 1Kuang Y, Beretta E. Global qualitative analysis of a ratio-dependent predator-prey system [J]. JMath Biol, 1998(36): 389-406.
  • 2Sanyi Tang, Lansun Chen. Global qualitative analysis for a ratio-dependent predator-prey modelwith delay [J], J Math Anal Appl, 2002(266): 401-419.
  • 3丁同仁,李承治.常微分方程教程[M].第二版,高等教育出版社,2004: 243-290.

同被引文献11

  • 1庞国萍.具有脉冲效应的两食饵一捕食者系统分析[J].数学的实践与认识,2007,37(16):129-133. 被引量:6
  • 2Guo Hongjian, Chen Lansun. The effects of impulsive harvest on a predator-prey system with distributed time delay [J]. Commun Nonlinear Sci Numer Simulat, 2009(14) : 2301-2309.
  • 3Chen Lijuan, Chen Fengde. Dynamic behaviors of the periodic predator-prey system with distributed time de- lays and impulsive effeet[J]. Nonlinear Analysis: Real World Applications, 2001(12) : 2467-2473.
  • 4Zhang Shuwen, Chen Lansun. Chaos in three species food chain system with impulsive perturbations [J . Solitons and Fractals, 2005(24): 73-83.
  • 5Meng Xinzhu, Jiao Jianjun, Chen Lanxun. The dy namics of an age structured predator-prey model with disturbing pulse and time delays[J]. Nonlinear Analy- sis: Real World Application, 2008, 9(2) : 547-561.
  • 6Zhang Hong, Chen I.anxurL Asymptotic behavior of discrete solutions to delayed neural networks with im- pulses[J]. Neurocomputing, 2008, 71 (4 6) : 1032- 1038.
  • 7Wang Qi, Xiang Baibin. Existence of positive periodic solutions for a neutral population model with delays and impulsive[J]. Nonlinear Analysis; Theory, Meth- ods and Application, 2008, 69(11): 3919-3930.
  • 8Zeng G, Wang F, J.J. Complexity of a delayed preda- tor-prey model with impulsive harvest and Holling-type II functional response[J]. Advances in Complex Sys- tems, 2008(11): 77-97.
  • 9Tang Sanyi, Chen lansun. Global qualitative analysis for a ratio-dependent predator-prey model with delay [J]. Journal Mathematical Analysis Applications, 2002(266) . 401-409.
  • 10Lakshmikantham V, Bainov D D, Simeonov P S. Theory of impulsive differential equations[M]. Singaore: World Scientific, 1989.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部