期刊文献+

一类超线性椭圆混合边值问题的无穷多解

Existence Results of Infinitely Solutions of Elliptic Mixed Boundary Problems
原文传递
导出
摘要 研究了一类新的椭圆方程混合边值问题,假设非线性项f(x,u)关于u在无穷远处(AR)条件不成立时满足超线性、次临界增长且是奇的,利用对称山路定理证明了该边值问题存在无穷多对弱解.另外还讨论了迹定理和Sobolev嵌入定理在该问题中的应用,几个嵌入不等式被用于定理的证明. A new elliptic mixed boundary problem is studied. Assume the nonlinear term f(x, u) is superlinear with respect to u at infinity without (AR) condition, sub-critical growth and odd. The existence results of infinitely week solutions are proved by Symmetric Mountain Pass Theorem. Furthermore, trace theorem and Sobolev embedding are discussed and theorem is applied to the mixed boundary problems. Some embedding inequalities are applied to the proof of the theorem.
作者 李国发
出处 《数学的实践与认识》 CSCD 北大核心 2013年第22期223-227,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金天元基金(10926167) 云南省教育厅科学研究基金(2013Y015)
关键词 临界点理论 P-LAPLACIAN算子 对称山路定理 超线性 嵌入定理 critical point p-Laplacian Symmetric Mountain Pass Theorem super-linear embedding theorem
  • 相关文献

参考文献8

  • 1桂旺生,周宗福.一类具p-Laplacian算子三阶m点边值问题的三个正解[J].数学的实践与认识,2011,41(5):204-209. 被引量:1
  • 2Shao Zhi-Qiang. Global existence of classical solutions to the mixed initial-boundary value problemfor quasilinear hyperbolic systems of diagonal form with large BV data[J]. Journal of MathematicalAnalysis and Applications, 2009, 360: 398-411.
  • 3Huang Yisheng, Zhou Yuying. Multiple solutions for a class of nonlinear elliptic problems with ap-Laplacian type operator [J]. Nonlinear Analysis, 2010,72: 3388-3395.
  • 4Bhatia Sumit Kaur K. Sreenadh.Multiple Positive Solutions for A Singular Elliptic Equation withNeumann Boundary Condition in Two Dimensions[J].Electronic Journal of Differential Equations,2009, 43: 1-13.
  • 5Liu Haihong, Su Ning. Well-posedness for a class of mixed problem of wave equations[J],NonlinearAnalysis, 2009, 71: 17-27.
  • 6Lions J L, Magenes E. Non-homogeneous Boundary Value Problems and Applications[M]. Berlin:Springer, 1972: 2-120.
  • 7裴瑞昌,马草川.一类混合边值问题的无穷多解[J].四川师范大学学报(自然科学版),2007,30(4):465-467. 被引量:5
  • 8李开泰,马逸尘,王立周.广义函数和Sobolev空间[M].西安交通大学出版社,2008:100.

二级参考文献10

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部