期刊文献+

凹凸棒石与硫酸亚铁协同吸附铀 被引量:8

Synergistic Treatment of Uranium-containing Wastewater by Attapulgite and FeSO_4
下载PDF
导出
摘要 通过静态吸附实验,研究了pH值、吸附时间、铀初始质量浓度、吸附剂用量等因素对凹凸棒石及凹凸棒石与硫酸亚铁协同吸附铀的影响,从热力学和动力学方面对吸附过程进行了分析,并通过红外光谱(IR)和扫描电镜(SEM)探讨了其吸附机理。结果表明,当温度为25℃、pH值为5.0、凹凸棒石投加量为15g/L、铀初始质量浓度为100mg/L、吸附反应30min时,凹凸棒石对UO22+的吸附率达89.5%,饱和吸附量可达40.8mg/g以上;加硫酸亚铁后,凹凸棒石和硫酸亚铁协同吸附铀的效果大幅提高,在25℃、pH值为6.5、凹凸棒石用量20g/L、FeSO4用量1g/L、铀初始质量浓度为100mg/L、吸附时间30min时,凹凸棒石和硫酸亚铁协同对UO22+的吸附率达99.9%以上,经处理的含铀废水能达国标排放。凹凸棒石对UO22+的吸附遵循Langmuir吸附等温线;凹凸棒石及其协同体系对UO22+的吸附动力学模型符合准二级动力学方程。凹凸棒石吸附铀前后的红外光谱表明,凹凸棒石主要是通过羟基、胺基等基团与铀络合进行吸附的。 By static adsorption experiments, the effects of pH, adsorption time, urani- um's initial concentration and adsorbent dosage were studied on biosorption capacity of attapulgite and cooperative adsorption of attapulgite and ferrous sulfate for uranium. The adsorption process was analyzed in thermodynamics and kinetics, and the adsorp- tion mechanism was analyzed by infrared spectroscopy and scanning electron micro- scope. The results show that the adsorption rate of attapulgite on UO+ reaches 89.5 and the saturated adsorption capacity of attapulgite is up to 40.8 mg/g in 30 min at 25 ℃ pH=5.0, 15 g/L of attapulgite dosage and 100 mg/L of uranium initial concen- tration. When the attapulgite dosage is 20 g/L, the uranium initial concentration is 100 mg/L, and the ferrous sulfate dosage is 1 g/L in 30 rain at 25 ℃and pHi6.5, theuranium initial system of attapulgite and ferrous sulfate on uranium is greatly improved, and the adsorption rate of UO2+ on attapulgite and ferrous sulfate is more than 99.9%and the treated uranium-bearing wastewater can reach the national standard discharge. The adsorption by attapulgite of uranium follows Langmuir adsorption isotherm. In addition, the adsorption by attapulgite and synergistic system are in line with quasi- second order equation. IR micrograph before and after attapulgite adsorbed uranium indicates that the attapulgite is mainly composed of hydroxyl and amido, and the main way of adsorption of uranium is the surface complexing.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2013年第11期1944-1950,共7页 Atomic Energy Science and Technology
基金 湖南省高等学校科学研究重点项目资助(12A120)
关键词 凹凸棒石 硫酸亚铁 吸附 协同效应 attapulgite FeSO4 uranium adsorption synergistic effect
  • 相关文献

参考文献10

  • 1SPRYNSKYY M, KOWALKOWSKI T’HLANGANANI T,et al. Adsorption perform-ance of talc for uranium removal from aqueoussolution [J ]. Journal of Chemical Engineering,2011,171(3): 1 185-1 193.
  • 2GARGARELLO R M,Di GREGORIO D,HUCK H,et al. Reduction of uranium ( Y1 ) byAcidithiobacillus thiooxidans and Acidithiobacil-lus ferrooxidans[J].Hydrometallurgy, 2010,104(3-4): 529-532.
  • 3SAKAMOTO N,KANO N, IMAIZUMI H.Biosorption of uranium and rare earth elementsusing biomass of algae[J]. Bioinorganic Chemis-try and Applications, 2008,8(1) : 1-8.
  • 4MERROUN L M, SELENSKA-POBELL S.Bacterial interactions with uranium: An environ-mental perspective [J]. Journal of ContaminantHydrology? 2008,102(3-4): 285-295.
  • 5AKHTAR K,WAHEED A M, KALID A M.Removal and recovery of uranium from aqueoussolutions by Trichoderma harzianum [J]. WaterResearch, 2007,41(6): 1 366-1 378.
  • 6KORICHI S, BENSMAIL A. Sorption of urani um(Yl ) on homoionic sodium smectite experi- mental study and surface complexation modeling [J].Journal of Hazardous Materials, 2009, 169 (1 3) : 780-793.
  • 7夏良树,谭凯旋,王晓,郑伟娜.铀在榕树叶上的吸附行为及其机理分析[J].原子能科学技术,2010,44(3):278-284. 被引量:34
  • 8夏良树,陈仲清.啤酒酵母菌——活性污泥曝气工艺处理含铀废水研究[J].核技术,2006,29(11):872-876. 被引量:6
  • 9FRANCIS A J, DODGE C J. Bioreduction ofuranium(YI) complexed with citric acid byClostridia affects its structure and solubility[J].Environmental Science Technology, 2008? 42(22) : 8 277-8 282.
  • 10张燮.工业分析化学[M].北京:化学工业出版社,2002:8:120-150.

二级参考文献25

  • 1夏良树,王孟,邓昌爱,傅仕福.榕树叶-活性污泥协同曝气处理含铀废水[J].核化学与放射化学,2006,28(4):231-235. 被引量:10
  • 2TSEZOS M,VOLESKY B.Biosorption of uranium and thorium[J].Biotechnology and Bioengineering,1981,23:583-604.
  • 3TSEZOS M.Biosorption of uranium and thorium[R].Montreal:Me Gill University,1980.
  • 4EJ 267.3-1984铀矿石中铀的测定(三氯化钛还原/钒酸铵氧化滴定法)[S].北京:中国标准出版社,1984.
  • 5NAKAJIMA A,TSURUTA T.Competitive biosorption of thorium and uranium by micrococcus luteus[J].Journal of Radioanalytical and Nuclear Chemistry,2004,260(1):13-18.
  • 6SALEM I A,EI-MAAZAWl M S.Kinetics and mechanism of color removal of methylene blue with hydrogen peroxide catalyzed by some supported alumina surfaces[J].Chemosphere,2000,41(8):1 173-1 180.
  • 7GARCLA-DELGADO R A,COTOUELOMINGUEZ L M,RODFOGUEZ J J.Equilibrium study of single-solute adsorption of anionic surfaetants with polymeric XAD resins[J].Environmental Science and Technology,1992,27 (7):975-987.
  • 8BENGUELLA B,BENAISS H.Cadmium removal from aqueous solution by chitin:Kinetic and equilibrium studies[J].Water Research,2002,36:2 463-2 474.
  • 9VALDMAN E,LEITE S G F.Biosorption of Zn,Cd and Cu by Sargassurn sp.waste biomass[J].Bioprocess Engineering,2000,22:171-173.
  • 10BEKTAS N,AGIM B A,KARA S.Kinetic and equilibrium studies in removing lead ions from aqueous solutions by natural sepiolite[J].Journal of Hazardous Materials,2004,112:115-122.

共引文献43

同被引文献106

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部